Scientific publications

Names in bold are names of researchers associated with the Language in Interaction consortium.

Abnar, S., & Zuidema, W. (2020). Quantifying attention flow in transformers. arXiv preprint arXiv:2005.00928.
Abnar, S., Ahmed, R., Mijnheer, M., & Zuidema, W. (2017). Experiential, distributional and dependency-based word embeddings have complementary roles in decoding brain activity. arXiv preprint arXiv:1711.09285.
Abnar, S., Ahmed, R., Mijnheer, M., & Zuidema, W. (2017). Experiential, distributional and dependency-based word embeddings have complementary roles in decoding brain activity. arXiv preprint arXiv:1711.09285.
Abnar, S., Dehghani, M., & Zuidema, W. (2020). Transferring inductive biases through knowledge distillation. arXiv preprint arXiv:2006.00555.
Abrahamse, R., Beynon, A., & Piai, V. (2021). Long-term auditory processing outcomes in early implanted young adults with cochlear implants: The mismatch negativity vs. P300 response. Clinical Neurophysiology, 132(1), 258-268.  https://doi.org/10.1016/j.clinph.2020.09.022
Alhama, R. G., & Zuidema, W. (2017). Segmentation as Retention and Recognition: the R&R model. In the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 1531-1536). Cognitive Science Society.
Alhama, R. G., & Zuidema, W. (2018). Pre-Wiring and Pre-Training: What does a neural network need to learn truly general identity rules?. Journal of Artificial Intelligence Research, 61, 927-946.
Alhama, R. G., & Zuidema, W. (2018). Pre-wiring and pre-training: What does a neural network need to learn truly general identity rules?. Journal of Artificial Intelligence Research, 61, 927-946.
Ambrogioni, L., Berezutskaya, J., Güçlü, U., van den Borne, E. W., Güçlütürk, Y., van Gerven, M. A., & Maris, E. (2017). Bayesian model ensembling using meta-trained recurrent neural networks. In Workshop on Meta-Learning (MetaLearn 2017)-Neural Information Processing Systems (NIPS 2017) (pp. 1-5). [Sl: sn].
Arana, S., Marquand, A., Hultén, A., Hagoort, P., & Schoffelen, J. M. (2020). Sensory modality-independent activation of the brain network for language. Journal of Neuroscience, 40(14), 2914-2924. https://doi.org/10.1523/JNEUROSCI.2271-19.2020
Araújo, S., Huettig, F., & Meyer, A. (2020). What underlies the deficit in rapid automatized naming (RAN) in adults with dyslexia? Evidence from eye movements. Scientific Studies of Reading, 1-16. https://doi.org/10.1080/10888438.2020.1867863
Armeni, K., Willems, R. M., & Frank, S. L. (2017). Probabilistic language models in cognitive neuroscience: Promises and pitfalls. Neuroscience & Biobehavioral Reviews, 83, 579-588.
Baas, M., Boot, N., van Gaal, S., de Dreu, C. K., & Cools, R. (2020). Methylphenidate does not affect convergent and divergent creative processes in healthy adults. NeuroImage, 205, 116279.  https://doi.org/10.1016/j.neuroimage.2019.116279
Bakker-Marshall, I., Takashima, A., Fernandez, C. B., Janzen, G., McQueen, J. M., & Van Hell, J. G. (2020). Overlapping and distinct neural networks supporting novel word learning in bilinguals and monolinguals. Bilingualism: Language and Cognition, 1-13.
Beinborn, L., & Choenni, R. (2020). Semantic drift in multilingual representations. Computational Linguistics, 46, 571–603. https://doi.org/10.1162/coli_a_00382
Berezutskaya, J. (2020). Data-driven modeling of the neural dynamics underlying language processing (Doctoral dissertation, Utrecht University). https://doi.org/10.33540/103
Berezutskaya, J., Baratin, C., Freudenburg, Z. V., & Ramsey, N. F. (2020). High‐density intracranial recordings reveal a distinct site in anterior dorsal precentral cortex that tracks perceived speech. Human brain mapping, 41(16), 4587-4609. https://doi.org/10.1371/journal.pcbi.1007992
Berezutskaya, J., Freudenburg, Z. V., Ambrogioni, L., Güçlü, U., van Gerven, M. A., & Ramsey, N. F. (2020). Cortical network responses map onto data-driven features that capture visual semantics of movie fragments. Scientific reports, 10(1), 1-21. https://doi.org/10.1038/s41598-020-68853-y
Berezutskaya, J., Freudenburg, Z. V., Güçlü, U., van Gerven, M. A., & Ramsey, N. F. (2020). Brain-optimized extraction of complex sound features that drive continuous auditory perception. PLoS computational biology, 16(7), e1007992. https://doi.org/10.1371/journal.pcbi.1007992
Berezutskaya, J., Freudenburg, Z., Güçlü, U., van Gerven, M., and Ramsey, N. (2017). Neural tuning to low-level features of speech throughout the perisylvian cortex. The Journal of Neuroscience, 37(33):7906–7920. https://doi.org/10.1523/JNEUROSCI.0238-17.2017
Berezutskaya, J., Freudenburg, Z., Ramsey, N., Güçlü, U., van Gerven, M., Duivesteijn, W., … & Postma, E. (2017). Modeling brain responses to perceived speech with LSTM networks. In Benelearn (pp. 149-153).
Blok, L. S., Hiatt, S. M., Bowling, K. M., Prokop, J. W., Engel, K. L., Cochran, J. N., … & Cooper, G. M. (2018). De novo mutations in MED13, a component of the Mediator complex, are associated with a novel neurodevelopmental disorder. Human genetics, 137(5), 375-388. https://doi.org/10.1007/s00439-018-1887-y
Blok, L. S., Rousseau, J., Twist, J., Ehresmann, S., Takaku, M., Venselaar, H., … & Campeau, P. M. (2018). CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nature communications, 9(1), 1-12. https://doi.org/10.1038/s41467-018-06014-6
Blok, L. S., Vino, A., Den Hoed, J., Underhill, H. R., Monteil, D., Li, H., … & Fisher, S. E. (2020). Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities. Genetics in Medicine, 1-9. https://doi.org/10.1038/s41436-020-01016-6
Blokpoel, M. (2018). Sculpting Computational‐Level Models. Topics in cognitive science, 10(3), 641-648. https://doi.org/10.1111/tops.12282
Bögels, S., & Levinson, S. C. (2017). The brain behind the response: Insights into turn-taking in conversation from neuroimaging. Research on Language and Social Interaction, 50(1), 71-89. https://doi.org/10.1080/08351813.2017.1262118
Bögels, S., Casillas, M., & Levinson, S. C. (2018). Planning versus comprehension in turn-taking: Fast responders show reduced anticipatory processing of the question. Neuropsychologia, 109, 295-310. https://doi.org/10.1016/j.neuropsychologia.2017.12.028
Bögels, S., Kendrick, K. H., & Levinson, S. C. (2020). Conversational expectations get revised as response latencies unfold. Language, Cognition and Neuroscience, 35(6), 766-779. https://doi.org/10.1080/23273798.2019.1590609
Bögels, S., Milvojevic, B., De Haas, N., Döller, C., Rasenberg, M., Ozyurek, A., … & Toni, I. (2018). Creating shared conceptual representations. In the 10th Dubrovnik Conference on Cognitive Science.http://hdl.handle.net/21.11116/0000-0003-F389-0
Bosker, H. R. (2014). The processing and evaluation of fluency in native and non-native speech. PhD Thesis, Utrecht University, Utrecht.
Bosker, H. R. (2016). Our own speech rate influences speech perception. In Speech Prosody 2016 (pp. 227-231).
Bosker, H. R. (2017). Accounting for rate-dependent category boundary shifts in speech perception. Attention, Perception & Psychophysics, 79, 333-343. https://doi.org/10.3758/s13414-016-1206-4
Bosker, H. R. (2017). Accounting for rate-dependent category boundary shifts in speech perception. Attention, Perception, & Psychophysics, 79(1), 333-343.
Bosker, H. R. (2017). How our own speech rate influences our perception of others. Journal of Experimental Psychology: Learning, Memory, and Cognition,43(8), 1225-1238. https://doi.org/10.1037/xlm0000381.
Bosker, H. R. (2017). How your own speech rate can change how you listen to others. In the Abstraction, Diversity and Speech Dynamics Workshop.
Bosker, H. R. (2017). Neural entrainment persists after stimulation, guiding temporal sampling of subsequent speech. In the Neural Oscillations in Speech and Language Processing symposium.
Bosker, H. R. (2017). The role of temporal amplitude modulations in the political arena: Hillary Clinton vs. Donald Trump. In Proceedings of Interspeech 2017(pp. 2228-2232). https://doi.org/10.21437/Interspeech.2017-142.
Bosker, H. R. (2017). The role of temporal amplitude modulations in the political arena: Hillary Clinton vs. Donald Trump. In Interspeech 2017 (pp. 2228-2232).
Bosker, H. R. (2018). Putting Laurel and Yanny in context. The Journal of the Acoustical Society of America, 144(6), EL503-EL508. https://doi.org/10.1121/1.5070144
Bosker, H. R.(2014). The processing and evaluation of fluency in native and non-native speech. Research Note for Pearson Language Testing.The processing and evaluation of fluency in native and non-native speech.
Bosker, H. R., & Cooke, M. (2017). Comparing the rhythmic properties of plain and Lombard speech. In the Abstraction, Diversity and Speech Dynamics Workshop.
Bosker, H. R., & Cooke, M. (2017). Rhythm in plain and Lombard speech. In the 9th Speech in Noise Workshop.
Bosker, H. R., & Cooke, M. (2018). Talkers produce more pronounced amplitude modulations when speaking in noise. The Journal of the Acoustical Society of America, 143(2), EL121-EL126. https://doi.org/10.1121/1.5024404
Bosker, H. R., & Ghitza, O. (2018). Entrained theta oscillations guide perception of subsequent speech: Behavioral evidence from rate normalization. Language, Cognition and Neuroscience, 33(8), 955-967. https://doi.org/10.1080/23273798.2018.1439179
Bosker, H. R., & Kösem, A. (2017). An entrained rhythm’s frequency, not phase, influences temporal sampling of speech. In Proceedings of Interspeech 2017(pp. 2416-2420). https://doi.org/10.21437/Interspeech.2017-73.
Bosker, H. R., & Kösem, A. (2017). An entrained rhythm’s frequency, not phase, influences temporal sampling of speech. In Interspeech 2017 (pp. 2416-2420).
Bosker, H. R., & Reinisch, E. (2015). Normalization for speechrate in native and nonnative speech. In 18th International Congress of Phonetic Sciences (ICPhS 2015). International Phonetic Association.
Bosker, H. R., & Reinisch, E. (2016). Testing the ‘Gabbling Foreigner Illusion’: Do foreign languages sound fast?. In the 2nd Workshop on Psycholinguistic Approaches to Speech Recognition in Adverse Conditions (PASRAC).
Bosker, H. R., & Reinisch, E. (2017). Foreign languages sound fast: evidence from implicit rate normalization. Frontiers in Psychology, 8: 1063. https://doi.org/10.3389/fpsyg.2017.01063.
Bosker, H. R., Peeters, D., & Holler, J. (2020). How visual cues to speech rate influence speech perception. Quarterly Journal of Experimental Psychology, 73(10), 1523-1536. https://doi.org/10.1177/1747021820914564
Bosker, H. R., Quené, H., Sanders, T. J. M., & de Jong, N. H. (2014). Native ‘um’s elicit prediction of low-frequency referents, but non-native ‘um’s do not.Journal of Memory and Language, 75, 104-116. https://doi.org/10.1016/j.jml.2014.05.004
Bosker, H. R., Quené, H., Sanders, T. J. M., & de Jong, N. H. (2014). The perception of fluency in native and non-native speech. Language Learning, 64, 579-614. https://doi.org/10.1111/lang.12067″
Bosker, H. R., Reinisch, E., & Sjerps, M. J. (2016). Listening under cognitive load makes speech sound fast. In H. van den Heuvel, B. Cranen, & S. Mattys (Eds.), Proceedings of the Speech Processing in Realistic Environments [SPIRE] Workshop (pp. 23-24).
Bosker, H. R., Reinisch, E., & Sjerps, M. J. (2017). Cognitive load makes speech sound fast, but does not modulate acoustic context effects. Journal of Memory and Language, 94, 166-176. https://doi.org/10.1016/j.jml.2016.12.002.
Bosker, H. R., Reinisch, E., & Sjerps, M. J. (2017). Cognitive load makes speech sound fast, but does not modulate acoustic context effects. Journal of Memory and Language, 94, 166-176. https://doi.org/10.1016/j.jml.2016.12.002
Bosker, H. R., Tjiong, V., Quené, H., Sanders, T., & De Jong, N. H. (2015). Both native and non-native disfluencies trigger listeners’ attention. In Disfluency in Spontaneous Speech: DISS 2015: An ICPhS Satellite Meeting. Edinburgh: DISS2015.
Brolsma, S. C., Vassena, E., Vrijsen, J. N., Sescousse, G., Collard, R. M., van Eijndhoven, P. F., … & Cools, R. (2020). Negative learning bias in depression revisited: Enhanced neural response to surprising reward across psychiatric disorders. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. https://doi.org/10.1016/j.bpsc.2020.08.011
Brolsma, S. C., Vrijsen, J. N., Vassena, E., Kandroodi, M. R., Bergman, M. A., van Eijndhoven, P. F., … & Cools, R. (2020). Challenging the negative learning bias hypothesis of depression: reversal learning in a naturalistic psychiatric sample. Psychological Medicine, 1-11. https://doi.org/10.1017/ S0033291720001956
Browning, M., Carter, C. S., Chatham, C., Den Ouden, H., Gillan, C. M., Baker, J. T., … & Paulus, M. (2020). Realizing the clinical potential of computational psychiatry: report From the Banbury Center Meeting, February 2019. Biological psychiatry, 88(2), e5-e10.
Brysbaert, M., Sui, L., Dirix, N., & Hintz, F. (2020). Dutch author recognition test. Journal of cognition, 3(1). https://doi.org/10.5334/joc.95
Burgering, M. A., Ten Cate, C., & Vroomen, J. (2018). Mechanisms underlying speech sound discrimination and categorization in humans and zebra finches. Animal cognition, 21(2), 285-299. https://doi.org/10.1007/s10071-018-1165-3
Burgering, M. A., van Laarhoven, T., Baart, M., & Vroomen, J. (2020). Fluidity in the perception of auditory speech: Cross-modal recalibration of voice gender and vowel identity by a talking face. Quarterly Journal of Experimental Psychology, 73(6), 957-967. https://doi.org/10.1177/1747021819900884
Burgering, M. (2021). The multidimensionality of speech categorization: Exploring shared mechanisms in songbirds together with audiovisual and neural mechanisms in humans.
Camerino, I., Sierpowska, J., Reid, A., Meyer, N. H., Tuladhar, A. M., Kessels, R. P., … & Piai, V. (2021). White matter hyperintensities at critical crossroads for executive function and verbal abilities in small vessel disease. Human Brain Mapping, 42(4), 993-1002. https://doi.org/10.1002/hbm.25273
Camerino, I., Sierpowska, J., Reid, A., Meyer, N. H., Tuladhar, A. M., Kessels, R. P., … & Piai, V. (2021). White matter hyperintensities at critical crossroads for executive function and verbal abilities in small vessel disease. Human Brain Mapping, 42(4), 993-1002. https://doi.org/10.1002/hbm.25273
Carrion-Castillo, A., Pepe, A., Kong, X. Z., Fisher, S. E., Mazoyer, B., Tzourio-Mazoyer, N., … & Francks, C. (2020). Genetic effects on planum temporale asymmetry and their limited relevance to neurodevelopmental disorders, intelligence or educational attainment. cortex, 124, 137-153. https://doi.org/10.1016/j.cortex.2019.11.006
Castells-Nobau, A., Eidhof, I., Fenckova, M., Brenman-Suttner, D. B., Scheffer-de Gooyert, J. M., Christine, S., Schellevis, R. L., Van der Laan, K., Quentin, C., Van Ninhuijs, L., Hofmann, F., Ejsmont, R., Fisher, S. E., Kramer, J. M., Sigrist, S. J., Simon, A. F., & Schenck, A. (2019). Conserved regulation of neurodevelopmental processes and behavior by FoxP in Drosophila. PLoS One, 14(2): e211652. https://doi.org/10.1371/journal.pone.0211652
Cattani, A., Floccia, C., Kidd, E., Pettenati, P., Onofrio, D., & Volterra, V. (2019). Gestures and words in naming: evidence from crosslinguistic and crosscultural comparison. Language Learning, 69(3), 709-746. https://doi.org/10.1111/lang.12346
Cook, J. L., Swart, J. C., Froböse, M. I., Diaconescu, A. O., Geurts, D. E., Den Ouden, H. E., & Cools, R. (2019). Catecholaminergic modulation of meta-learning. Elife, 8. https://doi.org/10.7554/eLife.51439
Cools, R. (2016). The costs and benefits of brain dopamine for cognitive control. Wiley Interdisciplinary Reviews: Cognitive Science, 7(5), 317-329.
Cools, R. (2019). Chemistry of the Adaptive Mind: Lessons from Dopamine. Neuron, 104(1), 113-131.  https://doi.org/10.1016/j.neuron.2019.09.035
Cools, R., Froböse, M., Aarts, E., & Hofmans, L. (2019). Dopamine and the motivation of cognitive control. In Handbook of clinical neurology (Vol. 163, pp. 123-143). Elsevier. https://doi.org/10.1016/B978-0-12-804281-6.00007-0
Cornelissen, B., Zuidema, W., & Burgoyne, J. A. (2020). Mode Classification and Natural Units in Plainchant. In Proceedings of the 21th International Conference on Music Information Retrieval (ISMIR 2020). Montréal, Canada.
Cornelissen, B., Zuidema, W., & Burgoyne, J. A. (2020, October). Studying Large Plainchant Corpora Using chant21. In 7th International Conference on Digital Libraries for Musicology (pp. 40-44).
Cutler, A. (2017). Converging evidence for abstract phonological knowledge in speech processing. In the 39th annual conference of the Cognitive Science Society (CogSci 2017) (pp. 1447-1448). Cognitive Science Society.
Cutler, A. (2017). Converging evidence for abstract phonological knowledge in speech processing. In the 39th annual conference of the Cognitive Science Society (CogSci 2017) (pp. 1447-1448). Cognitive Science Society.
Cutler, A., & Farrell, J. (2018). Listening in first and second language. The TESOL Encyclopedia of English Language Teaching, 1-7.
Cutler, A., & Farrell, J. (2018). Listening in first and second language. The TESOL Encyclopedia of English Language Teaching, 1-7. https://doi.org/10.1002/9781118784235.eelt0583
Cutler, A., & Jesse, A. (2021). Word stress in speech perception. The Handbook of Speech Perception, 239-265.
Cutler, A., Junge, C., Spokes, T. & Kidd, E. (2018). Phonological acquisition: Stress-based segmentation in English.  Abstracts of Laboratory Phonology 16, Lisbon; pp. 22-23
Cutter, M. G., Martin, A. E., & Sturt, P. (2019). Capitalization interacts with syntactic complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/xlm0000780
Cutter, M. G., Martin, A. E., & Sturt, P. (2020). Capitalization interacts with syntactic complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(6), 1146. https://doi.org/10.1037/xlm0000780
Cutter, M. G., Martin, A. E., & Sturt, P. (2020). Readers detect an low-level phonological violation between two parafoveal words. Cognition, 204, 104395. https://doi.org/10.1016/j.cognition.2020.104395
Cutter, M. G., Martin, A. E., & Sturt, P. (2020). The activation of contextually predictable words in syntactically illegal positions. Quarterly Journal of Experimental Psychology, 73(9), 1423-1430. https://doi.org/10.1177/1747021820911021
de Lange, F. P., & Ekman, M. (2018). Vision: Framing orientation selectivity. Elife, 7, e39762. https://doi.org/10.7554/eLife.39762
De Paepe, A.E., Sierpowska, J., Garcia-Gorro, C, Martinez-Horta, S., Perez-Perez, J., Kulisevsky, J., Rodriguez-Dechicha, N., Vaquer, I., Subira, S., Calopa, M., Muñoz, E. Santacruz, P., Ruiz-Idiago, J., Mareca, C., de Diego-Balaguer, R., & Camara, E. (2019). White matter cortico-striatal tracts predict apathy subtypes in Huntington’s disease. NeuroImage: Clinical, 24, 101965.  https://doi.org/10.1016/j.nicl.2019.101965
de Voogd, L. D., Kanen, J. W., Neville, D. A., Roelofs, K., Fernández, G., & Hermans, E. J. (2018). Eye-movement intervention enhances extinction via amygdala deactivation. Journal of Neuroscience, 38(40), 8694-8706 https://doi.org/10.1523/JNEUROSCI.0703-18.2018
de Voogd, L. D., Kanen, J. W., Neville, D. A., Roelofs, K., Fernández, G., & Hermans, E. J. (2018). Eye-movement intervention enhances extinction via amygdala deactivation. Journal of Neuroscience, 38(40), 8694-8706. https://doi.org/10.1016/j.neubiorev.2018.06.015
De Witte, E., Piai, V., Kurteff, G., Cai, R., Mariën, P., Dronkers, N., … & Berger, M. (2019). A valid alternative for in-person language assessments in brain tumor patients: feasibility and validity measures of the new TeleLanguage test. Neuro-Oncology Practice, 6(2), 93-102.  https://doi.org/10.1093/nop/npy020
de Zubicaray, G. I., & Piai, V. (2019). Investigating the spatial and temporal components of speech production. The Oxford handbook of neurolinguistics, 471-497.
Dekker, P., & Zuidema, W. (2020). Word prediction in computational historical linguistics. Journal of Language Modelling, 8(2), 295-3 https://doi.org/10.15398/jlm.v8i2.268
Dekker, P., & Zuidema, W. (2020). Word prediction in computational historical linguistics. Journal of Language Modelling, 8(2), 295-336.
Del Tredici, M., Fernández, R., & Boleda, G. (2019) Short-Term Meaning Shift: A Distributional Exploration. In Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT).
Den Hoed, J., & Fisher, S. E. (2020). Genetic pathways involved in human speech disorders. Current Opinion in Genetics & Development, 65, 103-111. https://doi.org/10.1016/j.gde.2020.05.012
Dideriksen, C., Fusaroli, R., Tylén, K., Dingemanse, M. & Christiansen, M.H. (2019). Contextualizing conversational strategies: backchannel, repair and linguistic alignment in spontaneous and task-oriented conversations. In Proceedings of Cognitive Science 2019 (pp. 261-267). Austin, Texas: Cognitive Science Societyhttp://hdl.handle.net/21.11116/0000-0003-91E6-5
Donnelly, E., & Kidd, E. (2020). The longitudinal relationship between conversational turn-taking and vocabulary growth in early language development. Child Development. https://doi.org/10.1111/cdev.13511
Donnelly, S., & Kidd, E. (2020). Individual differences in lexical processing efficiency and vocabulary in toddlers: A longitudinal investigation. Journal of experimental child psychology, 192, 104781. https://doi.org/10.1016/j.jecp.2019.104781
Doumas, L. A., & Martin, A. E. (2021). A model for learning structured representations of similarity and relative magnitude from experience. Current Opinion in Behavioral Sciences, 37, 158-166. https://doi.org/10.1016/j.cobeha.2021.01.001
Doumas, L. A., Puebla, G., Martin, A. E., & Hummel, J. E. (2019). Relation learning in a neurocomputational architecture supports cross-domain transfer. arXiv preprint arXiv:1910.05065.
Drijvers, L. (2019). On the oscillatory dynamics underlying speech-gesture integration in clear and adverse listening conditions (Doctoral dissertation, [Sl: sn]). https://hdl.handle.net/2066/202981
Drijvers, L., & Ozyurek, A. (2016). Visible speech enhanced: What do gestures and lip movements contribute to degraded speech comprehension?. In the 8th Speech in Noise Workshop (SpiN 2016).
Drijvers, L., & Ozyurek, A. (2016). What do iconic gestures and visible speech contribute to degraded speech comprehension?. In the Nijmegen Lectures 2016.
Drijvers, L., & Özyürek, A. (2017). Visual context enhanced: The joint contribution of iconic gestures and visible speech to degraded speech comprehension. Journal of Speech, Language, and Hearing Research, 60(1), 212-222.
Drijvers, L., & Özyürek, A. (2018). Native language status of the listener modulates the neural integration of speech and iconic gestures in clear and adverse listening conditions. Brain and language, 177, 7-17. https://doi.org/10.1016/j.bandl.2018.01.003
Drijvers, L., & Özyürek, A. (2019). Non-native listeners benefit less from gestures and visible speech than native listeners during degraded speech comprehension. Language and Speech, 0023830919831311.
Drijvers, L., & Trujillo, J. P. (2018). Commentary: Transcranial magnetic stimulation over left inferior frontal and posterior temporal cortex disrupts gesture-speech integration. Frontiers in human neuroscience, 12, 256. https://doi.org/10.3389/fnhum.2018.00256
Drijvers, L., Mulder, K., & Ernestus, M. (2016). Alpha and gamma band oscillations index differential processing of acoustically reduced and full forms. Brain and language, 153, 27-37.
Drijvers, L., Ozyurek, A., & Jensen, O. (2017). Alpha and beta oscillations in the language network, motor and visual cortex index semantic congruency between speech and gestures in clear and degraded speech. In the 47th Annual Meeting of the Society for Neuroscience (SfN).http://hdl.handle.net/21.11116/0000-0002-6979-1
Drijvers, L., Ozyurek, A., & Jensen, O. (2017). Low-and high-frequency oscillations predict the semantic integration of speech and gestures in clear and degraded speech. In the Neural Oscillations in Speech and Language Processing symposium.http://hdl.handle.net/21.11116/0000-0002-6971-9
Drijvers, L., Ozyurek, A., & Jensen, O. (2018). Alpha and beta oscillations predict the semantic integration of degraded speech and gestures. Journal of Cognitive Neuroscience, 30 (8), 1086-1097. https://doi.org/10.1162/jocn_a_01301
Drijvers, L., Ozyurek, A., & Jensen, O. (2018). Hearing and seeing meaning in noise: Alpha, beta and gamma oscillations predict gestural enhancement of degraded speech comprehension. Human Brain Mapping, 39(5), 2075-2087. https://doi.org/10.1002/hbm.23987
Drijvers, L., Zaadnoordijk, L., & Dingemanse, M. (2015). Sound-symbolism is disrupted in dyslexia: Implications for the role of cross-modal abstraction processes. In 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 602-607). Cognitive Science Society.
Drjiver, L., Ozyurek, A., & Jensen, O. (2016). Gestural enhancement of degraded speech comprehension engages the language network, motor and visual cortex as reflected by a decrease in the alpha and beta band. In the Eighth Annual Meeting of the Society for the Neurobiology of Language (SNL 2016).
Dubois, Y., Dagan, G., Hupkes, D., & Bruni, E. (2019). Location attention for extrapolation to longer sequences. arXiv preprint arXiv:1911.03872.
Eichert, N., Robinson, E. C., Bryant, K. L., Jbabdi, S., Jenkinson, M., Li, L., … & Mars, R. B. (2020). Cross-species cortical alignment identifies different types of anatomical reorganization in the primate temporal lobe. Elife, 9, e53232. https://doi.org/10.7554/eLife.53232
Eichert, N., Verhagen, L., Folloni, D., Jbabdi, S., Khrapitchev, A. A., Sibson, N. R., … & Mars, R. B. (2019). What is special about the human arcuate fasciculus? Lateralization, projections, and expansion. Cortex, 118, 107-115. https://doi.org/10.1016/j.cortex.2018.05.005
Eijk, L., Ernestus, M., & Schriefers, H. (2019). Alignment of Pitch and Articulation Rate. In Proceedings of the 19th International Congress of Phonetic Sciences, Melbourne. https://hdl.handle.net/2066/208198
Eijk, L., Fletcher, A., McAuliffe, M., & Janse, E. (2020). The Effects of Word Frequency and Word Probability on Speech Rhythm in Dysarthria. Journal of Speech, Language, and Hearing Research, 63(9), 2833-2845. https://doi.org/10.1044/2020_JSLHR-19-00389
Eising, E., Carrion Castillo, A., Vino, A., Strand, E. A., Jakielski, K. J., Scerri, T. S., Hildebrand, M. S., Webster, R., Ma, A., Mazoyer, B., Francks, C., Bahlo, M., Scheffer, I. E., Morgan, A. T., Shriberg, L. D., & Fisher, S. E. (2019). A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Molecular Psychiatry, 24(7), 1065-1078. https://doi.org/10.1038/s41380-018-0020-x
Eisner, F., & McQueen, J. M. (2018). Speech perception. Stevens’ handbook of experimental psychology and cognitive neuroscience, 3, 1-46.
Eisner, F., Kumar, U., Mishra, R. K., Nand Tripathi, V., Guleria, A., Prakash Singh, J., & Huettig, F. (2016). Literacy acquisition drives hemispheric lateralization of reading. In the 31st International Congress of Psychology (ICP2016).
Ernestus, M., Dikmans, M. E., & Giezenaar, G. (2017). Advanced second language learners experience difficulties processing reduced word pronunciation variants. Dutch Journal of Applied Linguistics, 6(1), 1-20. https://doi.org/10.1075/dujal.6.1.01ern
Favier, S., Wright, A., Meyer, A., & Huettig, F. (2019). Proficiency modulates between-but not within-language structural priming. Journal of Cultural Cognitive Science, 3(1), 105-124. https://doi.org/10.1007/s41809-019-00029-1
Ferreira, J., Roelofs, A., & Piai, V. (2020). The role of domain-general inhibition in inflectional encoding: Producing the past tense. Cognition, 200, 104235. https://doi.org/10.1016/j.cognition.2020.104235
Fisher, S. E. (2017). Evolution of language: Lessons from the genome. Psychonomic bulletin & review, 24(1), 34-40.
Fisher, S. E. (2019). Human genetics: The evolving story of FOXP2. Current Biology, 29(2), R65-R67. https://doi.org/10.1016/j.cub.2018.11.047
Fisher, S. E. (2019). Key issues and future directions: Genes and language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 609-620). Cambridge, MA: MIT Press.
Fisher, S. E., & Tilot, A. K. (2019). Bridging senses: Novel insights from synaesthesia. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences. Advance online publication. https://doi.org/10.1098/rstb.2019.0022
Fitz, H., & Chang, F. (2015). Prediction in error-based learning explains sentence-level ERP effects. In the 21st Architectures and Mechanisms for Language Processing Conference (AMLaP 2015).
Fitz, H., & Chang, F. (2017). Meaningful questions: The acquisition of auxiliary inversion in a connectionist model of sentence production. Cognition, 166, 225-250. https://doi.org/10.1016/j.cognition.2017.05.008
Fitz, H., & Chang, F. (2019). Language ERPs reflect learning through prediction error propagation. Cognitive psychology, 111, 15-52.  https://doi.org/10.1016/j.cogpsych.2019.03.002
Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences, 117(34), 20881-20889. https://doi.org/10.1073/pnas.2000222117
Francks, C. (2019). In search of the biological roots of typical and atypical human brain asymmetry. Physics of life reviews, 30, 22-24. https://doi.org/10.1016/j.plrev.2019.07.004
François, C., Ripollés, P., Ferreri, L., Muchart, J., Sierpowska, J., Fons, C., Solé, J., Rebollo, M., Zatorre, R.J., Garcia-Alix, A., Bosch, L., & Rodriguez-Fornells, A. (2019).  Right structural and functional reorganization in 4-year-old children with perinatal arterial ischemic stroke predict language production, e-Neuro.  https://doi.org/10.1523/ENEURO.0447-18.2019
Frank, S. L. (2017). Word embedding distance does not predict word reading time.
Frank, S. L. (2021). Toward computational models of multilingual sentence processing. Language Learning, 71(S1), 193-218. https://doi.org/10.1111/lang.12406
Frank, S. L. (2021). Toward computational models of multilingual sentence processing. Language Learning, 71(S1), 193-218. https://doi.org/10.1111/lang.12406
Frank, S. L., & Christiansen, M. H. (2018). Hierarchical and sequential processing of language: A response to: Ding, Melloni, Tian, and Poeppel (2017). Rule-based and word-level statistics-based processing of language: insights from neuroscience. Language, Cognition and Neuroscience. Language, Cognition and Neuroscience, 33(9), 1213-1218. https://doi.org/10.1080/23273798.2018.1424347
Frank, S. L., & Ernst, P. (2019). Judgements about double-embedded relative clauses differ between languages. Psychological research, 83(7), 1581-1593.  https://doi.org/10.1007/s00426-018-1014-7
Frank, S. L., & Fitz, H. (2016). Reservoir computing and the Sooner-is-Better bottleneck [Commentary on Christiansen & Slater]. Behavioral and Brain Sciences, 39.
Frank, S. L., & Willems, R. M. (2017). Word predictability and semantic similarity show distinct patterns of brain activity during language comprehension. Language, Cognition and Neuroscience, 32(9), 1192-1203. https://doi.org/10.1080/23273798.2017.1323109
Frank, S. L., & Yang, J. (2018). Lexical representation explains cortical entrainment during speech comprehension. PloS one, 13(5), e0197304. https://doi.org/10.1371/journal.pone.0197304
Frank, S. L., Monaghan, P., & Tsoukala, C. (2019). Neural network models of language acquisition and processing.  In: P. Hagoort (Ed.), Human Language: from Genes and Brains to Behavior (pp. 277-291). Cambridge, MA: The MIT Press. https://hdl.handle.net/2066/213704
Frank, S. L., Trompenaars, T., & Vasishth, S. (2016). Cross‐linguistic differences in processing double‐embedded relative clauses: Working‐memory constraints or language statistics?. Cognitive Science, 40(3), 554-578.
Frank, S.L. (2017). Word embedding distance does not predict word reading time. In G. Gunzelmann, A. Howes, T. Tenbrink, & E.J. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 385-390). Austin, TX: Cognitive Science Society. https://hdl.handle.net/2066/180490
Frank, S.L., & Hoeks, J.C.J. (2019). The interaction between structure and meaning in sentence comprehension: Recurrent neural networks and reading times. In Proceedings of the 41st Annual Conference of the Cognitive Science Society (pp. 337-343). https://hdl.handle.net/2066/213785
Frank, S.L., Monaghan, P., & Tsoukala, C. (2019). Neural network models of language acquisition and processing. In: P. Hagoort (Ed.), Human Language: from Genes and Brains to Behavior (pp. 277-291). Cambridge, MA: The MIT Press. https://hdl.handle.net/2066/213704
Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2019). Consistency influences altered auditory feedback processing. Quarterly Journal of Experimental Psychology, 72(10), 2371-2379.  https://doi.org/10.1177/1747021819838939
Freches, G. B., Haak, K. V., Bryant, K. L., Schurz, M., Beckmann, C. F., & Mars, R. B. (2020). Principles of temporal association cortex organisation as revealed by connectivity gradients. Brain Structure and Function, 1-16. https://doi.org/10.1007/s00429-020-02047-0
Freches, G. B., Haak, K. V., Bryant, K. L., Schurz, M., Beckmann, C. F., & Mars, R. B. (2020). Principles of temporal association cortex organisation as revealed by connectivity gradients. Brain Structure and Function, 1-16. https://doi.org/10.1007/s00429-020-02047-0
French, C. A., Vinueza Veloz, M. F., Zhou, K., Peter, S., Fisher, S. E., Costa, R. M., & De Zeeuw, C. I. (2019). Differential effects of Foxp2 disruption in distinct motor circuits. Molecular Psychiatry, 24, 447-462. https://doi.org/10.1038/s41380-018-0199-x
Froböse, M. I., Westbrook, A., Bloemendaal, M., Aarts, E., & Cools, R. (2020). Catecholaminergic modulation of the cost of cognitive control in healthy older adults. PloS one, 15(2), e0229294. https://doi.org/10.1371/journal.pone.0229294
Gao, X., Dera, J., Nijhof, A. D., & Willems, R. M. (2019). Is less readable liked better? The case of font readability in poetry appreciation. PLOS ONE, 14(12), e0225757.  https://doi.org/10.1371/journal.pone.0225757
Gao, Y., Zheng, L., Liu, X., Nichols, E. S., Zhang, M., Shang, L., Ding, G., Meng, Z., & Liu, L. (2019). First and second language reading difficulty among Chinese–English bilingual children: The prevalence and influences from demographic characteristics. Frontiers in Psychology, 10: 2544.  https://doi.org/10.3389/fpsyg.2019.02544
Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D. and 25 more (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9(1): 77.  https://doi.org/10.1038/s41398-019-0402-0
Gibson, M., & Bosker, H. R. (2016). Over vloeiendheid in spraak. Tijdschrift Taal, 7(10), 40-45.
Giulianelli, M., Harding, J., Mohnert, F., Hupkes, D., & Zuidema, W. (2018). Under the hood: Using diagnostic classifiers to investigate and improve how language models track agreement information. arXiv preprint arXiv:1808.08079.
Greco, C., Plank, B., Fernández, R. & Bernardi, R. (2019) Psycholinguistics meets Continual Learning: Measuring Catastrophic Forgetting in Visual Question Answering. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL).
Grey, S., Schubel, L. C., McQueen, J. M., & Van Hell, J. G. (2019). Processing foreign-accented speech in a second language: Evidence from ERPs during sentence comprehension in bilinguals. Bilingualism: Language and Cognition, 22(5), 912-929.  https://doi.org/10.1017/S1366728918000937
Gunz, P., Tilot, A. K., Wittfeld, K., Teumer, A., Shapland, C. Y., Van Erp, T. G. M., Dannemann, M., Vernot, B., Neubauer, S., Guadalupe, T., Fernandez, G., Brunner, H., Enard, W., Fallon, J., Hosten, N., Völker, U., Profico, A., Di Vincenzo, F., Manzi, G., Kelso, J. and 7 more (2019). Neandertal introgression sheds light on modern human endocranial globularity. Current Biology, 29(1), 120-127.  https://doi.org/10.1016/j.cub.2018.10.065
Haak, K. V., Marquand, A. F., & Beckmann, C. F. (2018). Connectopic mapping with resting-state fMRI. Neuroimage, 170, 83-94. https://doi.org/10.1016/j.neuroimage.2017.06.075
Haak, K. V., Marquand, A. F., & Beckmann, C. F. (2018). Connectopic mapping with resting-state fMRI. Neuroimage, 170, 83-94. https://doi.org/10.1016/j.neuroimage.2017.06.075
Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca’s region and beyond. Current opinion in Neurobiology, 28, 136-141.
Hagoort, P. (2017). Don’t forget neurobiology: An experimental approach to linguistic representation. Commentary on Branigan and Pickering” An experimental approach to linguistic representation”. Behavioral and Brain Sciences, 40. https://doi.org/10.1017/S0140525X16002028
Hagoort, P. (2017). The core and beyond in the language-ready brain. Neuroscience & Biobehavioral Reviews, 81, 194-204. https://doi.org/10.1016/j.neubiorev.2017.01.048
Hagoort, P. (2017). The neural basis for primary and acquired language skills. In Developmental perspectives in written language and literacy: In Honor of LudoVerhoeven (pp. 17-27). John Benjamins Publishing Company. https://doi.org/10.1075/z.206.02hag
Hagoort, P. (2018). Prerequisites for an evolutionary stance on the neurobiology of language. Current opinion in behavioral sciences, 21, 191-194. https://doi.org/10.1016/j.cobeha.2018.05.012
Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
Hagoort, P. (2019). The neurobiology of language beyond single word processing. Science, 366(6461), 55-58. DOI: 10.1126/science.aax0289 https://doi.org/10.1126/science.aax0289
Hagoort, P. (2020). Taal. In O. Van den Heuvel, Y. Van der Werf, B. Schmand, & B. Sabbe (Eds.), Leerboek neurowetenschappen voor de klinische psychiatrie (pp. 234-239). Amsterdam: Boom Uitgevers.
Hagoort, P. (2020). The meaning-making mechanism (s) behind the eyes and between the ears. Philosophical Transactions of the Royal Society B, 375(1791), 20190301. https://doi.org/10.1098/rstb.2019.0301
Hagoort, P. (Ed.). (2019). Human language: From genes and brains to behavior. Cambridge, MA: MIT Press.
Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In: P. Hagoort (Ed.), Human Language: from Genes and Brains to Behavior (pp. 527-532). Cambridge, MA: The MIT Press.
Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual review of neuroscience, 37, 347-362.
Hashemzadeh, M., Kaufeld, G., White, M., Martin, A. E., & Fyshe, A. (2020). From Language to Language-ish: How Brain-Like is an LSTM’s Representation of Nonsensical Language Stimuli?. arXiv preprint arXiv:2010.07435.
Haworth, S., Shapland, C. Y., Hayward, C., Prins, B. P., Felix, J. F., Medina-Gomez, C., Rivadeneira, F., Wang, C., Ahluwalia, T. S., Vrijheid, M., Guxens, M., Sunyer, J., Tachmazidou, I., Walter, K., Iotchkova, V., Jackson, A., Cleal, L., Huffmann, J., Min, J. L., Sass, L. and 15 more (2019). Low-frequency variation in TP53 has large effects on head circumference and intracranial volume. Nature Communications, 10: 357.  https://doi.org/10.1038/s41467-018-07863-x
Heidlmayr, K., Takashima, A., Hagoort, P., & Milivojevic, B. (2020). The neural correlates of schema-dependent representational geometries during naturalistic discourse: Text-based and experiential approaches. In the Twelfth Annual (Virtual) Meeting of the Society for the Neurobiology of Language (SNL 2020).http://hdl.handle.net/21.11116/0000-0007-4A19-B
Heidlmayr, K., Weber, K., Takashima, A., & Hagoort, P. (2020). No title, no theme: The joined neural space between speakers and listeners during production and comprehension of multi-sentence discourse. cortex, 130, 111-126. https://doi.org/10.1016/j.cortex.2020.04.035
Heilbron, M., Ehinger, B., Hagoort, P., & De Lange, F. P. (2019). Tracking naturalistic linguistic predictions with deep neural language models. In Proceedings of the 2019 Conference on Cognitive Computational Neuroscience (pp. 424-427).
Heilbron, M., Richter, D., Ekman, M., Hagoort, P., & De Lange, F. P. (2020). Word contexts enhance the neural representation of individual letters in early visual cortex. Nature communications, 11(1), 1-11. https://doi.org/10.1038/s41467-019-13996-4
Heyselaar, E., Peeters, D., & Hagoort, P. (2020). Do we predict upcoming speech content in naturalistic environments?. Language, Cognition and Neuroscience, 1-22. https://doi.org/10.1080/23273798.2020.1859568
Hintz, F., Dijkhuis, M., van‘t Hoff, V., McQueen, J. M., & Meyer, A. S. (2020). A behavioural dataset for studying individual differences in language skills. Scientific data, 7(1), 1-18. https://doi.org/10.1038/s41597-020-00758-x
Hintz, F., Jongman, S. R., Dijkhuis, M., van’t Hoff, V., McQueen, J. M., & Meyer, A. S. (2019). Shared lexical access processes in speaking and listening? An individual differences study. Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/xlm0000768
Hintz, F., Jongman, S. R., Dijkhuis, M., van’t Hoff, V., McQueen, J. M., & Meyer, A. S. (2019). Shared lexical access processes in speaking and listening? An individual differences study. Journal of Experimental Psychology: Learning, Memory, and Cognition.  https://doi.org/10.1037/xlm0000768
Hintz, F., Meyer, A. S., & Huettig, F. (2017). Predictors of verb-mediated anticipatory eye movements in the visual world. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(9), 1352.http://dx.doi.org/10.1037/xlm0000388
Hintz, F., Meyer, A. S., & Huettig, F. (2020). Activating words beyond the unfolding sentence: Contributions of event simulation and word associations to discourse reading. Neuropsychologia, 141, 107409. https://doi.org/10.1016/j.neuropsychologia.2020.107409
Hintz, F., Meyer, A. S., & Huettig, F. (2020). Visual context constrains language-mediated anticipatory eye movements. Quarterly Journal of Experimental Psychology, 73(3), 458-467. https://doi.org/10.1177/1747021819881615
Hintz, F., Voeten, C. C., Isakoglou, C., McQueen, J. M., & Meyer, A. S. (2021, March). Individual differences in language ability: Quantifying the relationships between linguistic experience, general cognitive skills and linguistic processing skills. In the 34th Annual CUNY Conference on Human Sentence Processing (CUNY 2021).
Hoedemaker, R. S., & Meyer, A. S. (2019). Planning and coordination of utterances in a joint naming task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(4), 732. https://doi.org/10.1037/xlm0000603
Hoeksema, N., Wiesmann, M., Kiliaan, A., Hagoort, P., & Vernes, S. C. (2020, April). Bats and the comparative neurobiology of vocal learning. The Evolution of Language Conferences.
Hofmans, L., Papadopetraki, D., Van Den Bosch, R., Määttä, J. I., Froböse, M. I., Zandbelt, B. B., … & Cools, R. (2020). Methylphenidate boosts choices of mental labor over leisure depending on baseline striatal dopamine. BioRxiv, 859637. https://doi.org/10.1101/859637
Hollenstein, N., Barrett, M., & Beinborn, L. (2020, May). Towards best practices for leveraging human language processing signals for natural language processing. In Proceedings of the Second Workshop on Linguistic and Neurocognitive Resources (pp. 15-27).
Hulten, A., Schoffelen, J.-M., Udden, J., Lam, N. H. L., & Hagoort, P. (2019). How the brain makes sense beyond the processing of single words – An MEG study. Neuroimage, 186, 586-594. https://doi.org/10.1016/j.neuroimage.2018.11.035
Hupkes, D. (2020). Hierarchy and interpretability in neural models of language processing. AmsterdamInstitute for Logic, Language and Computation. https://hdl.handle.net/11245.1/2828b6a8-f616-453e-987f-f88288aa1f59
Hupkes, D., & Zuidema, W. (2017). Diagnostic classification and symbolic guidance to understand and improve recurrent neural networks. In Proceedings Workshop on Interpreting, Explaining and Visualizing Deep Learning (at NIPS2017).
Hupkes, D., Bouwmeester, S., & Fernández, R. (2018). Analysing the potential of seq-to-seq models for incremental interpretation in task-oriented dialogue. arXiv preprint arXiv:1808.09178.
Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2020). Compositionality decomposed: how do neural networks generalise?. Journal of Artificial Intelligence Research, 67, 757-795.
Hupkes, D., Singh, A., Korrel, K., Kruszewski, G., & Bruni, E. (2018). Learning compositionally through attentive guidance. arXiv preprint arXiv:1805.09657.
Hupkes, D., Singh, A.K., Korrel K., Kruszewski, G., & Bruni, E. (2019). Learning compositionally through attentive guidance. CICLing 2019. arXiv preprint arXiv:1805.09657.
Hupkes, D., Veldhoen, S., & Zuidema, W. (2018). Visualisation and’diagnostic classifiers’ reveal how recurrent and recursive neural networks process hierarchical structure. Journal of Artificial Intelligence Research, 61, 907-926.
Hupkes, D., Veldhoen, S., & Zuidema, W. (2018). Visualisation and’diagnostic classifiers’ reveal how recurrent and recursive neural networks process hierarchical structure. Journal of Artificial Intelligence Research, 61, 907-926.
Iacozza, S., Meyer, A. S., & Lev-Ari, S. (2019). How in-group bias influences source memory for words learned from in-group and out-group speakers. Frontiers in human neuroscience, 13, 308. https://doi.org/10.3389/fnhum.2019.00308
Ioumpa, K., Graham, S. A., Clausner, T., Fisher, S. E., Van Lier, R., & Van Leeuwen, T. M. (2019). Enhanced self-reported affect and prosocial behaviour without differential physiological responses in mirror-sensory synaesthesia. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences. Advance online publication.  https://doi.org/10.1098/rstb.2019.0395
Jacobs, E., Vergult, S., Braro, M. P., Garcia-Minaur, S., Simarro Fernando, S., Dueland Hjortshoj, T., … & Hoffmann, K. (2019). A novel neurodevelopmental syndrome caused by loss-of-function of the Zinc Finger Homeobox 3 gene (ZFHX3). In NVHG and BeSHG joint annual meeting, Date: 2019/09/19-2019/09/20, Location: Veldhoven, the Netherlands (pp. 57-57).http://hdl.handle.net/1854/LU-8663855
Janssen, C., Segers, E., Mcqueen, J. M., & Verhoeven, L. (2017). Transfer from implicit to explicit phonological abilities in first and second language learners. Bilingualism: Language and Cognition, 20(4), 795-812.
Janssen, C., Segers, E., McQueen, J. M., & Verhoeven, L. (2019). Comparing effects of instruction on word meaning and word form on early literacy abilities in kindergarten. Early Education and Development, 30(3), 375-399.  https://doi.org/10.1080/10409289.2018.1547563
Janssen, N. (2020). Staying connected as we speak: Behavioral and tractography evidence from health and neurodegenerative disease (Doctoral dissertation, Radboud University Nijmegen).http://hdl.handle.net/2066/226804
Janssen, N., Roelofs, A., Mangnus, M., Sierpowska, J., Kessels, R. P., & Piai, V. (2020). How the speed of word finding depends on ventral tract integrity in primary progressive aphasia. NeuroImage: Clinical, 28, 102450. https://doi.org/10.1016/j.nicl.2020.102450
Jongman, S. R., Khoe, Y. H., & Hintz, F. (2020). Vocabulary size influences spontaneous speech in native language users: Validating the use of automatic speech recognition in individual differences research. Language and speech, 0023830920911079. https://doi.org/10.1177/0023830920911079
Jongman, S. R., Piai, V., & Meyer, A. S. (2019). Planning for language production: the electrophysiological signature of attention to the cue to speak. Language, Cognition and Neuroscience, 1-18. https://doi.org/10.1080/23273798.2019.1690153
Jongman, S. R., Piai, V., & Meyer, A. S. (2020). Planning for language production: the electrophysiological signature of attention to the cue to speak. Language, Cognition and Neuroscience, 35(7), 915-932. https://doi.org/10.1080/23273798.2019.1690153
Jongman, S. R., Roelofs, A., & Lewis, A. G. (2020). Attention for speaking: Prestimulus motor-cortical alpha power predicts picture naming latencies. Journal of cognitive neuroscience, 32(5), 747-761. https://doi.org/10.1162/jocn_a_01513
Jongman, S. R., Roelofs, A., & Lewis, A. G. (2020). Attention for speaking: Prestimulus motor-cortical alpha power predicts picture naming latencies. Journal of Cognitive Neuroscience, 32(5), 747-761. https://doi.org/10.1162/jocn_a_01513
Jumelet, J., & Hupkes, D. (2018). Do language models understand anything? on the ability of lstms to understand negative polarity items. arXiv preprint arXiv:1808.10627.
Jumelet, J., Zuidema, W., & Hupkes, D. (2019). Analysing Neural Language Models: Contextual Decomposition Reveals Default Reasoning in Number and Gender Assignment. CoNLL2019. arXiv preprint arXiv:1909.08975
Kaufeld, G., Bosker, H. R., Ten Oever, S., Alday, P. M., Meyer, A. S., & Martin, A. E. (2020). Linguistic structure and meaning organize neural oscillations into a content-specific hierarchy. Journal of Neuroscience, 49(2), 9467-9475. doi:10.1523/JNEUROSCI.0302-20.2020.
Kaufeld, G., Naumann, W., Meyer, A. S., Bosker, H. R., & Martin, A. E. (2019). Contextual speech rate influences morphosyntactic prediction and integration. Language, Cognition and Neuroscience, 1-16. https://doi.org/10.1080/23273798.2019.1701691
Kaufeld, G., Naumann, W., Meyer, A. S., Bosker, H. R., & Martin, A. E. (2020). Contextual speech rate influences morphosyntactic prediction and integration. Language, Cognition and Neuroscience, 35(7), 933-948. https://doi.org/10.1080/23273798.2019.1701691
Kaufeld, G., Ravenschlag, A., Meyer, A. S., Martin, A. E., & Bosker, H. R. (2019). Knowledge-based and signal-based cues are weighted flexibly during spoken language comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition.  https://doi.org/10.1037/xlm0000744
Kaufeld, G., Ravenschlag, A., Meyer, A. S., Martin, A. E., & Bosker, H. R. (2020). Knowledge-based and signal-based cues are weighted flexibly during spoken language comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(3), 549.http://dx.doi.org/10.1037/xlm0000744
Khoe, Y.H., Tsoukala, C., Kootstra, G.J., & Frank, S.L. (2020). Modeling cross-language structural priming in sentence production. In: T.C. Stewart (Ed.), Proceedings of the 18th Annual Meeting of the International Conference on Cognitive Modelling (pp. 131-137)
Kia, S. M., Huijsdens, H., Dinga, R., Wolfers, T., Mennes, M., Andreassen, O. A., … & Marquand, A. F. (2020, October). Hierarchical Bayesian Regression for Multi-Site Normative Modeling of Neuroimaging Data. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 699-709). Springer, Cham.
Kidd, E., & Donnelly, S. (2020). Individual differences in first language acquisition. Annual Review of Linguistics, 6, 319-340. https://doi.org/10.1146/annurev-linguistics-011619-030326
Kidd, E., Bidgood, A., Donnelly, S., Durrant, S., Peter, M. S., & Rowland, C. F. (2020). Individual differences in first language acquisition and their theoretical implications. Trends in Language Acquisition Research (TiLAR), (27), 189-219.
Klaus, J., Schutter, D. J., & Piai, V. (2019). Transient perturbation of the left temporal cortex evokes plasticity‐related reconfiguration of the lexical network. Human brain mapping. https://doi.org/10.1002/hbm.24860
Kochari, A. (2019). Conducting web-based experiments for numerical cognition research. Journal of Cognition, 2(1), 39, 1-21. Doi: 10.5334/joc.85 https://doi.org/10.5334/joc.85
Kochari, A. (2020). Processing symbolic magnitude information conveyed by number words and by scalar adjectives.
Kochari, A. (2020). Perceiving and communicating magnitudes: Behavioral and electrophysiological studies. AmsterdamInstitute for Logic, Language and Computation. https://hdl.handle.net/11245.1/ffeb87aa-7aea-491d-bfba-9664b8b35449
Kochari, A. R., Lewis, A. G., Schoffelen, J. M., & Schriefers, H. (2021). Semantic and syntactic composition of minimal adjective-noun phrases in Dutch: an MEG study. Neuropsychologia, 155, 107754. https://doi.org/10.1016/j.neuropsychologia.2021.107754
Kochari, A., & Flecken, M. (2019). Lexical prediction in language comprehension: a replication study of grammatical gender effects in Dutch. Language, Cognition and Neuroscience, 34(2), 239-253. Doi: 10.1080/23273798.2018.1524500 https://doi.org/10.1080/23273798.2018.1524500
Kong, X. Z., Tzourio-Mazoyer, N., Joliot, M., Fedorenko, E., Liu, J., Fisher, S. E., & Francks, C. (2020). Gene expression correlates of the cortical network underlying sentence processing. Neurobiology of Language, 1(1), 77-103. https://doi.org/10.1162/nol_a_00004
Könings, M., Blokpoel, M., Kapusta, K., Claassen, T., Buitelaar, J. K., Glennon, J. C., & Bielczyk, N. Z. (2019). Quantifying free behaviour in an open field using k-motif approach. Scientific Reports, 9(1), 1-14. https://doi.org/10.1038/s41598-019-56482-z
Korrel, K., Hupkes, D., Dankers, V., & Bruni, E. (2019). Transcoding compositionally: using attention to find more generalizable solutions. BlackboxNLP, ACL 2019. arXiv preprint arXiv:1906.01234.
Kösem, A., Bosker, H. R., Jensen, O., Hagoort, P., & Riecke, L. (2020). Biasing the perception of spoken words with Transcranial Alternating Current Stimulation. Journal of Cognitive Neuroscience, 32(8), 1428-1437. https://doi.org/10.1162/jocn_a_01579
Kösem, A., Bosker, H. R., Takashima, A., Meyer, A. S., Jensen, O., & Hagoort, P. (2018). Neural entrainment determines the words we hear. Current Biology,28, 2867-2875. doi:10.1016/j.cub.2018.07.023
Krutwig, J., Sadakata, M., Garcia-Cossio, E., Desain, P., & McQueen, J. M. (2017). Perception and production interactions in non-native speech category learning: Between neural and behavioural signatures. In Psycholinguistics in Flanders (PiF 2017).
Krutwig, J., Sadakata, M., Garcia-Cossio, E., Desain, P., & McQueen, J. M. (2017). Perception and production interactions in non-native speech category learning: Between neural and behavioural signatures. In Psycholinguistics in Flanders (PiF 2017).
Krutwig, J., Sadakata, M., Garcia-Cossio, E., Desain, P., & McQueen, J. M. (2017). Perception and production interactions in non-native speech category learning: Between neural and behavioural signatures. In Psycholinguistics in Flanders (PiF 2017).http://hdl.handle.net/21.11116/0000-0004-921F-5
Kwisthout, J., & van Rooij, I. (2019). Computational Resource Demands of a Predictive Bayesian Brain. Computational Brain & Behavior, 1-15.
Kwisthout, J., & van Rooij, I. (2020). Computational resource demands of a predictive Bayesian brain. Computational Brain & Behavior, 3(2), 174-188. https://doi.org/10.1007/s42113-019-00032-3
Kwisthout, J., Bekkering, H., & Van Rooij, I. (2017). To be precise, the details don’t matter: On predictive processing, precision, and level of detail of predictions. Brain and cognition, 112, 84-91.
Lakretz, Y., Kruszewski, G., Desbordes, T., Hupkes, D., Dehaene, S., & Baroni, M. (2019). The emergence of number and syntax units in LSTM language models. NAACL 2019. arXiv preprint arXiv:1903.07435.
Lawrence, S. J., Formisano, E., Muckli, L., & de Lange, F. P. (2019). Laminar fMRI: Applications for cognitive neuroscience. Neuroimage, 197, 785-791. https://doi.org/10.1016/j.neuroimage.2017.07.004
Le, P., & Zuidema, W. (2016). Quantifying the vanishing gradient and long distance dependency problem in recursive neural networks and recursive LSTMs. arXiv preprint arXiv:1603.00423.
Le, P., & Zuidema, W. (2020). DoLFIn: Distributions over Latent Features for Interpretability. arXiv preprint arXiv:2011.05295.
Leonandya, R., Bruni, E., Hupkes, D., & Kruszewski, G. (2019). The Fast and the Flexible: training neural networks to learn to follow instructions from small data. IWCS 2019. arXiv preprint arXiv:1809.06194.
Levinson, S. C. (2016). Turn-taking in human communication–origins and implications for language processing. Trends in cognitive sciences, 20(1), 6-14.
Levinson, S. C., & Holler, J. (2014). The origin of human multi-modal communication. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1651), 20130302.
Levshina, N. (2020). Communicative efficiency and differential case marking: A reverse-engineering approach. Linguistics Vanguard.http://hdl.handle.net/21.11116/0000-0007-09ED-5
Levshina, N. (2020). Conditional inference trees and random forests. In Practical Handbook of Corpus Linguistics. Springer.http://hdl.handle.net/21.11116/0000-0007-09E6-C
Levshina, N. (2020). Database of Annotated Core Arguments: English, Lao and Russian (Version 1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4065523
Levshina, N. (2020). Efficient trade-offs as explanations in functional linguistics: some problems and an alternative proposal. Revista da ABRALIN 19(3): 50-78.http://hdl.handle.net/21.11116/0000-0007-906C-D
Levshina, N. (2020). How tight is your language? A semantic typology based on Mutual Information. In Proceedings of the 19th Workshop on Treebanks and Linguistic Theories (pp. 70-78).   https://www.aclweb.org/anthology/2020.tlt-1.7.pdf
Levshina, N. (2021). Corpus-based typology: Applications, challenges and some solutions. Linguistic Typology.http://hdl.handle.net/21.11116/0000-0008-1575-D
Levshina, N., & Moran, S. (2021). Efficiency in human languages: Corpus evidence for universal principles. Linguistics Vanguard, 7(s3).http://hdl.handle.net/21.11116/0000-0007-09F0-0
Lewis, A. G. (2020). Balancing exogenous and endogenous cortical rhythms for speech and language requires a lot of entraining: a commentary on Meyer, Sun & Martin (2020). Language, Cognition and Neuroscience, 35(9), 1133-1137. https://doi.org/10.1080/23273798.2020.1734640
Liu, R., Bögels, S., Bird, G., Medendorp, P., & Toni, I. (2019). Integrating visuospatial perspective-taking and communicative demands in sensorimotor control of referential pointing.. PsyArXiv.
Lopopolo, A. (2021). Properties, structures and operations: Studies on language processing in the brain using computational linguistics and naturalistic stimuli (Doctoral dissertation, Radboud University Nijmegen Nijmegen).
Lopopolo, A., Frank, S. L., van den Bosch, A., & Willems, R. (2019, June). Dependency parsing with your eyes: Dependency structure predicts eye regressions during reading. In Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics (pp. 77-85).
Lopopolo, A., Frank, S. L., Van den Bosch, A., & Willems, R. M. (2017). Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain. PloS one, 12(5), e0177794. https://doi.org/10.1371/journal.pone.0177794
Lopopolo, A., Frank, S. L., Van den Bosch, A., & Willems, R. M. (2017). Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain. PloS one, 12(5). https://doi.org/10.1371/journal.pone.0177794
Lopopolo, A., Frank, S. L., Van den Bosch, A., & Willems, R. M. (2017). Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain. PloS one, 12(5). https://doi.org/10.1371/journal.pone.0177794
Lopopolo, A., Frank, S.L., Van den Bosch, A., Nijhof, A., & Willems, R.M. (2018). The Narrative Brain Dataset: an fMRI dataset for the study of natural language processing in the brain. In B. Devereux, E. Shutova, & C.-R. Huang (Eds.), Proceedings of LREC 2018 Workshop “Linguistic and Neuro-Cognitive Resources (LiNCR)” (pp. 8-11).http://hdl.handle.net/2066/193726
Lopopolo, A., van den Bosch, A., Petersson, K. M., & Willems, R. M. (2020). Distinguishing syntactic operations in the brain: Dependency and phrase-structure parsing. Neurobiology of Language, (Just Accepted), 1-64.
Lopopolo, A., van den Bosch, A., Petersson, K. M., & Willems, R. M. (2021). Distinguishing syntactic operations in the brain: Dependency and phrase-structure parsing. Neurobiology of Language, 2(1), 152-175. https://doi.org/10.1162/nol_a_00029
Luna, D. R., Ponti, E. M., Hupkes, D., & Bruni, E. (2020). Internal and external pressures on language emergence: Least effort, object constancy and frequency. arXiv preprint arXiv:2004.03868.
Macuch Silva, V., Holler, J., Ozyurek, A., & Roberts, S. G. (2020). Multimodality and the origin of a novel communication system in face-to-face interaction. Royal Society Open Science, 7: 182056. https://doi.org/10.1098/rsos.182056
Mak, M., & Willems, R. M. (2019). Mental simulation during literary reading: Individual differences revealed with eye-tracking. Language, Cognition and Neuroscience, 34(4), 511-535. https://doi.org/10.1080/23273798.2018.1552007
Mantegna, F., Hintz, F., Ostarek, M., Alday, P. M., & Huettig, F. (2019). Distinguishing integration and prediction accounts of ERP N400 modulations in language processing through experimental design. Neuropsychologia, 134, 107199. https://doi.org/10.1016/j.neuropsychologia.2019.107199
Marquand, A. F., Haak, K. V., & Beckmann, C. F. (2017). Functional corticostriatal connection topographies predict goal-directed behaviour in humans. Nature human behaviour, 1(8), 1-9. https://doi.org/10.1038/s41562-017-0146
Marquand, A. F., Kia, S. M., Zabihi, M., Wolfers, T., Buitelaar, J. K., & Beckmann, C. F. (2019). Conceptualizing mental disorders as deviations from normative functioning. Molecular psychiatry, 24(10), 1415-1424. https://doi.org/10.1038/s41380-019-0441-1
Marquand, A. F., Rezek, I., Buitelaar, J., & Beckmann, C. F. (2016). Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies. Biological psychiatry, 80(7), 552-561.
Martin, A. E. & Baggio, G. (2019). Modelling meaning composition from formalism to mechanism. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1791), 20190298. https://doi.org/10.1098/rstb.2019.0298
Martin, A. E. (2020). A compositional neural architecture for language. Journal of Cognitive Neuroscience, 32(8), 1407-1427. https://doi.org/10.1162/jocn_a_01552
Martin, A. E., & Doumas, L. A. (2019). Predicate learning in neural systems: using oscillations to discover latent structure. Current Opinion in Behavioral Sciences, 29, 77-83. https://doi.org/10.1016/j.cobeha.2019.04.008
Martin, A. E., & Doumas, L. A. (2020). Tensors and compositionality in neural systems. Philosophical Transactions of the Royal Society B, 375(1791), 20190306.  https://doi.org/10.1098/rstb.2019.0306
Martinez-Conde, S., Alexander, R. G., Blum, D., Britton, N., Lipska, B. K., Quirk, G. J., Swiss, J. I., Willems, R. M., & Macknik, S. L. (2019). The Storytelling Brain: How Neuroscience Stories Help Bridge the Gap between Research and Society. Journal of Neuroscience, 39(42), 8285–8290.  https://doi.org/10.1523/JNEUROSCI.1180-19.2019
Martins, M. J., Krause, C., Neville, D. A., Pino, D., Villringer, A., & Obrig, H. (2019). Recursive hierarchical embedding in vision is impaired by posterior middle temporal gyrus lesions. Brain, 142(10), 3217-3229. https://doi.org/10.1093/brain/awz242
Mas-Herrero, E., Sescousse, G., Cools, R., & Marco-Pallarés, J. (2019). The contribution of striatal pseudo-reward prediction errors to value-based decision-making. NeuroImage, 193, 67-74. https://doi.org/10.1016/j.neuroimage.2019.02.052
Maslowski, M., Meyer, A. S., & Bosker, H. R. (2017). When slow speech sounds fast: How the speech rate of one talker influences perception of another talker. In the IPS workshop: Abstraction, Diversity, and Speech Dynamics.http://hdl.handle.net/11858/00-001M-0000-002D-4EED-1
Maslowski, M., Meyer, A. S., & Bosker, H. R. (2017). Whether long-term tracking of speech rate affects perception depends on who is talking. In Proceedings of Interspeech 2017 (pp. 586-590). https://doi.org/10.21437/Interspeech.2017-1517.
Maslowski, M., Meyer, A. S., & Bosker, H. R. (2017). Whether long-term tracking of speech rate affects perception depends on who is talking. In Interspeech 2017 (pp. 586-590). https://doi.org/10.21437/Interspeech.2017-1517
Maslowski, M., Meyer, A. S., & Bosker, H. R. (2019). How the tracking of habitual rate influences speech perception. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(1), 128. https://doi.org/10.1037/xlm0000579
Maslowski, M., Meyer, A. S., & Bosker, H. R. (2019). Listeners normalize speech for contextual speech rate even without an explicit recognition task. The Journal of the Acoustical Society of America, 146(1), 179-188. https://doi.org/10.1121/1.5116004
Maslowski, M., Meyer, A. S., & Bosker, H. R. (2020). Eye-tracking the time course of distal and global speech rate effects. I https://doi.org/10.1037/xhp0000838
McKone, E., Wan, L., Pidcock, M., Crookes, K., Reynolds, K., Dawel, A., … & Fiorentini, C. (2019). A critical period for faces: Other-race face recognition is improved by childhood but not adult social contact. Scientific reports, 9(1), 1-13.  https://doi.org/10.1038/s41598-019-49202-0
McQueen, J. M., Eisner, F., & Norris, D. (2016). When brain regions talk to each other during speech processing, what are they talking about? Commentary on Gow and Olson (2015). Language, Cognition and Neuroscience, 31(7), 860-863.
McQueen, J. M., Eisner, F., Burgering, M. A., & Vroomen, J. (2020). Specialized memory systems for learning spoken words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(1), 189. https://doi.org/10.1037/xlm0000704
McQueen, J. M., Eisner, F., Burgering, M. A., & Vroomen, J. (2020). Specialized memory systems for learning spoken words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(1), 189. https://doi.org/10.1037/xlm0000704
McQueen, J. M., Krutwig, J., Jager, L., Desain, P., Witteman, J., & Schiller, N. O. (2018). Learning foreign-language sounds in adulthood: Listening, speaking, and individual differences. The Journal of the Acoustical Society of America, 144(3), 1716-1716. https://doi.org/10.1121/1.5067608
McQueen, J.M., & Meyer, A.S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Language in Interaction: The human faculty from genes to behaviour (pp. 85-96). Cambridge, MA: MIT Press.
Merkx, D., & Frank, S. L. (2019). Learning semantic sentence representations from visually grounded language without lexical knowledge. Natural Language Engineering, 25(4), 451-466. https://doi.org/10.1017/S1351324919000196
Merkx, D., Frank, S.L., & Ernestus, M. (2019). Language learning using speech to image retrieval. In Proceedings of Interspeech 2019, 1841-1845.
Meyer, A. S., Roelofs, A., & Brehm, L. (2019). Thirty years of Speaking: An introduction to the special issue. Language, Cognition and Neuroscience, 34(9), 1073-1084. https://doi.org/10.1080/23273798.2019.1652763
Meyer, L., Sun, Y., & Martin, A. E. (2019). Synchronous, but not entrained: exogenous and endogenous cortical rhythms of speech and language processing. Language, Cognition and Neuroscience, 1-11. Doi: 10.1080/23273798.2019.1693050. https://doi.org/10.1080/23273798.2019.1693050
Meyer, L., Sun, Y., & Martin, A. E. (2020). “Entraining” to speech, generating language?. Language, Cognition and Neuroscience, 35(9), 1138-1148. https://doi.org/10.1080/23273798.2020.1827155
Meyer, L., Sun, Y., & Martin, A. E. (2020). Synchronous, but not entrained: exogenous and endogenous cortical rhythms of speech and language processing. Language, Cognition and Neuroscience, 35(9), 1089-1099. https://doi.org/10.1080/23273798.2019.1693050
Mickan, A., McQueen, J. M., & Lemhöfer, K. (2019). Bridging the gap between second language acquisition research and memory science: The case of foreign language attrition. Frontiers in Human Neuroscience, 13, 397. https://doi.org/10.3389/fnhum.2019.00397
Milivojevic, B., Varadinov, M., Grabovetsky, A. V., Collin, S. H., & Doeller, C. F. (2016). Coding of event nodes and narrative context in the hippocampus. Journal of Neuroscience, 36(49), 12412-12424.
Miró, J., Ripollés, P., Sierpowska, J., Santurino, M., Juncadella, M., Falip, M., & Rodríguez-Fornells, A. (2019). Autobiographical memory in epileptic patients after temporal lobe resection or bitemporal hippocampal sclerosis. Brain imaging and behavior, 1-15.  https://doi.org/10.1007/s11682-019-00113-8
Mongelli, V., Meijs, E. L., Van Gaal, S., & Hagoort, P. (2019). No language unification without neural feedback: How awareness affects sentence processing. NeuroImage, 202, 116063. https://doi.org/10.1016/j.neuroimage.2019.116063
Morgan, A., Fisher, S. E., Scheffer, I., & Hildebrand, M. (2017). FOXP2-related speech and language disorders.
Mul, M., & Zuidema, W. (2019). Siamese recurrent networks learn first-order logic reasoning and exhibit zero-shot compositional generalization. arXiv preprint arXiv:1906.00180.
Muysken, P. (2016). Bilingual complexes: the perspective of the Gradient Symbolic Computation framework. Bilingualism, 19(5), 891. https://doi.org/10.1017/S1366728916000031
Muysken, P. (2016). Creole languages. In Oxford Research Encyclopedia of Linguistics. https://doi.org/10.1093/acrefore/9780199384655.013.68
Muysken, P. (2016). Fine tuning cross-linguistic interaction: The nuts and bolts. Cognitive Perspectives on Bilingualism, 17, 207.
Muysken, P. (2016). From Colombo to Athens: Areal and universalist perspectives on bilingual compound verbs. Languages, 1(1), 2. https://doi.org/10.3390/languages1010002
Muysken, P. (2016). Language contact: Trojan horse or new potential for cross-fertilization?. Linguistic Typology, 20(3), 537-545. https://doi.org/10.1515/lingty-2016-0025
Neville, D. A., Raaijmakers, J. G., & van Maanen, L. (2019). Modulation of the word frequency effect in recognition memory after an unrelated lexical decision task. Journal of Memory and Language, 108, 104026. https://doi.org/10.1016/j.jml.2019.05.004
Noorman, S., Neville, D. A., & Simanova, I. (2018). Words affect visual perception by activating object shape representations. Scientific reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-32483-2
Noorman, S., Neville, D. A., & Simanova, I. (2018). Words affect visual perception by activating object shape representations. Scientific Reports, 8(1), 14156 https://doi.org/10.1038/s41598-018-32483-2
Norris, D., McQueen, J. M., & Cutler, A. (2016). Prediction, Bayesian inference and feedback in speech recognition. Language, cognition and neuroscience, 31(1), 4-18.
Økland, H. S., Todorović, A., Lüttke, C. S., McQueen, J. M., & De Lange, F. P. (2019). Combined predictive effects of sentential and visual constraints in early audiovisual speech processing. Scientific reports, 9(1), 1-13. https://doi.org/10.1038/s41598-019-44311-2
Oldehinkel, M., Mennes, M., Marquand, A., Charman, T., Tillmann, J., Ecker, C., … & Moessnang, C. (2019). Altered connectivity between cerebellum, visual, and sensory-motor networks in autism spectrum disorder: results from the EU-AIMS longitudinal European autism project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(3), 260-270.  https://doi.org/10.1016/j.bpsc.2018.11.010
Otworowska, M., Blokpoel, M., Sweers, M., Wareham, T., & van Rooij, I. (2018). Demons of Ecological Rationality. Cogn. Sci., 42(3), 1057-1066.
Özyürek, A. (2014). Hearing and seeing meaning in speech and gesture: insights from brain and behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1651), 20130296.
Özyürek, A. (2017). Function and processing of gesture in the context of language. Why gesture, 39-58.
Pezzelle, S. &  Fernández, R. (2019)  Big Generalizations with Small Data: Exploring the Role of Training Samples in Learning Adjectives of Size. In  Proceedings of the LANTERN Workshop at EMNLP-IJCNLP. Doi: 10.18653/v1/D19-6403 https://doi.org/10.18653/v1/D19-6403
Pezzelle, S. &  Fernández, R. (2019)  Is the Red Square Big? MALeViC: Modeling Adjectives Leveraging Visual Contexts. In  Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Piai, V., & Knight, R. T. (2018). Lexical selection with competing distractors: Evidence from left temporal lobe lesions. Psychonomic Bulletin & Review, 25(2), 710-717. https://doi.org/10.3758/s13423-017-1301-0
Piai, V., & Zheng, X. (2019). Speaking waves: neuronal oscillations in language production. Psychology of Learning and Motivation, 71, 265-302.  https://doi.org/10.1016/bs.plm.2019.07.002
Piai, V., Anderson, K. L., Lin, J. J., Dewar, C., Parvizi, J., Dronkers, N. F., & Knight, R. T. (2016). Direct brain recordings reveal hippocampal rhythm underpinnings of language processing. Proceedings of the National Academy of Sciences, 113(40), 11366-11371.
Piai, V., De Witte, E., Sierpowska, J., Zheng, X., Hinkley, L. B., Mizuiri, D., … & Nagarajan, S. S. (2020). Language neuroplasticity in brain tumor patients revealed by magnetoencephalography. Journal of cognitive neuroscience, 32(8), 1497-1507. https://doi.org/10.1162/jocn_a_01561
Piai, V., Klaus, J., & Rossetto, E. (2020). The lexical nature of alpha-beta oscillations in context-driven word production. Journal of Neurolinguistics, 55, 100905. https://doi.org/10.1016/j.jneuroling.2020.100905
Piai, V., Prins, J. B., Verdonck-de Leeuw, I. M., Leemans, C. R., Terhaard, C. H., Langendijk, J. A., … & Kessels, R. P. (2019). Assessment of neurocognitive impairment and speech functioning before head and neck cancer treatment. JAMA Otolaryngology–Head & Neck Surgery, 145(3), 251-257. doi: 10.1001/jamaoto.2018.3981
Piai, V., Roelofs, A., & Schriefers, H. (2014). Locus of semantic interference in picture naming: Evidence from dual-task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(1), 147.
Piai, V., Roelofs, A., Rommers, J., & Maris, E. (2015). Beta oscillations reflect memory and motor aspects of spoken word production. Human brain mapping, 36(7), 2767-2780.
Piai, V., Rommers, J., & Knight, R. T. (2018). Lesion evidence for a critical role of left posterior but not frontal areas in alpha–beta power decreases during context‐driven word production. European Journal of Neuroscience, 48(7), 2622-2629. https://doi.org/10.1111/ejn.13695
Piai, V., Vos, S. H., Idelberger, R., Gans, P., Doorduin, J., & ter Laan, M. (2019). Awake surgery for a violin player: monitoring motor and music performance, a case report. Archives of Clinical Neuropsychology, 34(1), 132-137. https://doi.org/10.1093/arclin/acy009
Piray, P., den Ouden, H. E., van der Schaaf, M. E., Toni, I., & Cools, R. (2017). Dopaminergic modulation of the functional ventrodorsal architecture of the human striatum. Cerebral Cortex, 27(1), 485-495.
Piray, P., Ly, V., Roelofs, K., Cools, R., & Toni, I. (2019). Emotionally aversive cues suppress neural systems underlying optimal learning in socially anxious individuals. Journal of Neuroscience, 39(8), 1445-1456. https://doi.org/10.1523/JNEUROSCI.1394-18.2018
Postema, M., Van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto Filho, G., Calderoni, S., Calvo, R., Daly, E., Deruelle, C., Di Martino, A., Dinstein, I., Duran, F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, D., Fedor, J., Feng, X. and 38 more (2019). Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nature Communications, 10: 4958.  https://doi.org/10.1038/s41467-019-13005-8
Pouw, W., & Holler, J. (2020). Timing in conversation is dynamically adjusted turn by turn: Evidence for lag-1 negatively autocorrelated turn taking times in telephone conversation.
Pouw, W., de Wit, J., Bögels, S., Rasenberg, M., Milivojevic, B., & Ozyurek, A. (2021). Semantically related gestures move alike: Towards a distributional semantics of gesture kinematics. https://doi.org/10.31219/osf.io/pgq6m
Pouw, W., Dingemanse, M., & Ozyurek, A. (2020). Gesture Network Analysis Reveals Structural Properties of Change in Evolving Languages in the Lab.
Pouw, W., Dingemanse, M., Motamedi, Y., & Ozyurek, A. (2020). Multiscale kinematic analysis reveals structural properties of change in evolving manual languages in the lab.http://hdl.handle.net/21.11116/0000-0006-B338-1
Preisig, B. C., Sjerps, M. J., Hervais-Adelman, A., Kösem, A., Hagoort, P., & Riecke, L. (2019). Bilateral Gamma/Delta Transcranial Alternating Current Stimulation Affects Interhemispheric Speech Sound Integration. Journal of cognitive neuroscience, 1-9.  https://doi.org/10.1162/jocn_a_01498
Prystauka, Y., & Lewis, A. G. (2019). The power of neural oscillations to inform sentence comprehension: A linguistic perspective. Language and Linguistics Compass, 13(9), e12347.  https://doi.org/10.1111/lnc3.12347
Przezdzik, I. (2021). Investigations into cognitive systems with resting-state functional connectivity: Connectopic mapping as a way to characterise the organisation underlying complex behaviour and abstract neural functions (Doctoral dissertation, sl: sn). https://hdl.handle.net/2066/233901
Przeździk, I., Faber, M., Fernandez, G., Beckmann, C. F., & Haak, K. V. (2019). The functional organisation of the hippocampus along its long axis is gradual and predicts recollection. Cortex, 119, 324-335. https://doi.org/10.1016/j.cortex.2019.04.015
Przeździk, I., Faber, M., Fernández, G., Beckmann, C. F., & Haak, K. V. (2020). Gradient mapping in the human hippocampus: Reply to Poppenk. Cortex; a journal devoted to the study of the nervous system and behavior, 128, 318-321. https://doi.org/10.1016/j.cortex.2020.04.004
Puebla, G., Martin, A. E., & Doumas, L. A. (2021). The relational processing limits of classic and contemporary neural network models of language processing. Language, Cognition and Neuroscience, 36(2), 240-254. https://doi.org/10.1080/23273798.2020.1821906
Quaresima, A., Van den Broek, D., Fitz, H., Duarte, R., & Petersson, K. M. (2020). A minimal reduction of dendritic structure and its functional implication for sequence processing in biological neurons. In the Twelfth Annual (Virtual) Meeting of the Society for the Neurobiology of Language (SNL 2020).http://hdl.handle.net/21.11116/0000-0007-4A9F-4
Quinn, S., & Kidd, E. (2019). Symbolic play promotes non‐verbal communicative exchange in infant–caregiver dyads. British Journal of Developmental Psychology, 37(1), 33-50.  https://doi.org/10.1111/bjdp.12251
Rasenberg, M., Özyürek, A., & Dingemanse, M. (2020). Alignment in multimodal interaction: an integrative framework. Doi:  https://doi.org/10.31234/osf.io/pbw6f
Rasenberg, M., Özyürek, A., & Dingemanse, M. (2020). Alignment in multimodal interaction: An integrative framework. Cognitive Science, 44(11), e12911. https://doi.org/10.1111/cogs.12911
Rasenberg, M., Rommers, J. & Bergen, G. van (2019). Anticipating predictability: an ERP investigation of expectation-managing discourse markers in dialogue comprehension. Language, Cognition and Neuroscience, 35(1), 1-16. https://doi.org/10.1080/23273798.2019.1624789
Rățală, C. E., Fallon, S. J., van der Schaaf, M. E., ter Huurne, N., Cools, R., & Sanfey, A. G. (2019). Catecholaminergic modulation of trust decisions. Psychopharmacology, 236(6), 1807-1816. https://doi.org/10.1007/s00213-019-5165-z
Raviv, L., Meyer, A. S., & Lev-Ari, S. (2019). Larger communities create more systematic languages. Proceedings of the Royal Society B: Biological Sciences, 286(1907): 20191262. https://doi.org/10.1098/rspb.2019.1262
Raviv, L., Meyer, A., & Lev-Ari, S. (2019). Compositional structure can emerge without generational transmission. Cognition, 182, 151-164.  https://doi.org/10.1016/j.cognition.2018.09.010
Repplinger, M., Beinborn, L. M., & Zuidema, W. H. (2018). Vector-space models of words and sentences. Nieuw Archief voor Wiskunde, 19(3), 167-174.
Rich, P., Blokpoel, M., de Haan, R., & van Rooij, I. (2020). How intractability spans the cognitive and evolutionary levels of explanation. Topics in cognitive science, 12(4), 1382-1402. https://doi.org/10.1111/tops.12506
Rich, P., Blokpoel, M., de Haan, R., Otworowska, M., Sweers, M., Wareham, T., & van Rooij, I. (2019). Naturalism, tractability and the adaptive toolbox. Synthese, 1-36.
Rich, P., Blokpoel, M., de Haan, R., Otworowska, M., Sweers, M., Wareham, T., & van Rooij, I. (2019). Naturalism, tractability and the adaptive toolbox. Synthese, 1-36.  https://doi.org/10.1007/s11229-019-02431-2
Ries, S. K., Piai, V., Perry, D., Griffin, S., Jordan, K., Henry, R., … & Berger, M. S. (2019). Roles of ventral versus dorsal pathways in language production: An awake language mapping study. Brain and language, 191, 17-27. https://doi.org/10.1016/j.bandl.2019.01.001
Rietbergen, M., Roelofs, A., Den Ouden, H., & Cools, R. (2018). Disentangling cognitive from motor control: Influence of response modality on updating, inhibiting, and shifting. Acta psychologica, 191, 124-130. https://doi.org/10.1016/j.actpsy.2018.09.008
Rietbergen, M., Roelofs, A., Den Ouden, H., & Cools, R. (2018). Disentangling cognitive from motor control: Influence of response modality on updating, inhibiting, and shifting. Acta psychologica, 191, 124-130. https://doi.org/10.1016/j.actpsy.2018.09.008
Rodd, J. (2020). How speaking fast is like running: Modelling control of speaking rate (Doctoral dissertation, Radboud University Nijmegen Nijmegen). https://hdl.handle.net/2066/222287
Rodd, J., & Chen, A. (2016). Pitch accents show a perceptual magnet effect: Evidence of internal structure in intonation categories. In Speech Prosody 2016 (pp. 697-701).
Rodd, J., Bosker, H. R., Ernestus, M., Alday, P. M., Meyer, A. S., & Ten Bosch, L. (2020). Control of speaking rate is achieved by switching between qualitatively distinct cognitive “gaits”: Evidence from simulation. Psychological review, 127(2), 281. https://doi.org/10.1037/rev0000172
Rodd, J., Bosker, H. R., Ernestus, M., Meyer, A. S., & Ten Bosch, L. (2017). Simulating speaking rate control: A spreading activation model of syllable timing. In the Workshop Conversational speech and lexical representations.http://hdl.handle.net/11858/00-001M-0000-002D-571E-A
Rodd, J., Bosker, H. R., Ernestus, M., Ten Bosch, L., & Meyer, A. S. (2017). How we regulate speech rate: phonetic evidence for a’gain strategy’in speech planning. In the Abstraction, Diversity and Speech Dynamics Workshop.
Rodd, J., Bosker, H. R., Ten Bosch, L., & Ernestus, M. (2019). Deriving the onset and offset times of planning units from acoustic and articulatory measurements. The Journal of the Acoustical Society of America, 145(2), EL161-EL167. https://doi.org/10.1121/1.5089456
Rodd, J., Decuyper, C., Bosker, H. R., & Ten Bosch, L. (2020). A tool for efficient and accurate segmentation of speech data: announcing POnSS. Behavior Research Methods, 1-13. https://doi.org/10.3758/s13428-020-01449-6
Roelofs, A. (2018). A unified computational account of cumulative semantic, semantic blocking, and semantic distractor effects in picture naming. Cognition, 172, 59-72. https://doi.org/10.1016/j.cognition.2017.12.007
Roelofs, A., & Piai, V. (2017). Distributional analysis of semantic interference in picture naming. Quarterly Journal of Experimental Psychology, 70(4), 782-792. https://doi.org/10.1080/17470218.2016.1165264
Rojas Berscia, L. M. (2019). From Kawapanan to Shawi: Topics in language variation and change (Doctoral dissertation, Radboud University Nijmegen).http://hdl.handle.net/2066/204333
Rojas-Berscia, L. M. (2015). Mayna, the lost Kawapanan language. LIAMES,15, 393-407. Retrieved from http://revistas.iel.unicamp.br/index.php/liames/article/view/4549.”
Rojas-Berscia, L. M. (2016). Fritz, Samuel (?). El vocabulario de la lengua xebera, una doctrina cristiana en xebero y quechua, y la gramática de la lengua xebera (siglo XVIII). Alexander-Bakkerus, Astrid (edición y estudio). Madrid/Frankfurt am Main: Iberoamericana Vervuert, 2016. 152 pp. Lexis, 40(2), 479-489.
Rojas-Berscia, L. M. (2016). Lóxoro, traces of a contemporary Peruvian genderlect. Borealis–An International Journal of Hispanic Linguistics, 5(1), 157-170. https://doi.org/10.7557/1.5.1.3725
Rojas-Berscia, L. M. (2019). Nominalization in Shawi (Chayahuita). Nominalization in the languages of the Americas, 491-514.
Rojas-Berscia, L. M., & Bourdeau, C. (2017). Optional or syntactic ergativity in Shawi? Distribution and possible origins. Linguistic discovery, 15(1), 50-65.
Rojas-Berscia, L. M., & Ghavami Dicker, S. (2015). Teonimia en el Alto Amazonas, el caso de Kanpunama. Escritura y Pensamiento, 18(36), 117-146.”
Rojas-Berscia, L. M., & Shi, J. A. (2017). Hakka as spoken in Suriname. In Boundaries and Bridges (pp. 179-196). De Gruyter Mouton.
Rojas-Berscia, L. M., Napurí, A., & Wang, L. (2019). Shawi (Chayahuita). Journal of the International Phonetic Association, 1-14.
Roos, N. M., & Piai, V. (2020). Across‐session consistency of context‐driven language processing: A magnetoencephalography study. European Journal of Neuroscience, 52(5), 3457-3469. https://doi.org/10.1111/ejn.14785
Rotaru, A. S., Vigliocco, G., & Frank, S. L. (2016). From words to behaviour via semantic networks.
Rowland, C. F., & Kidd, E. (2019). Key issues and future directions: How do children acquire language? In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 181-185). Cambridge, MA: MIT Press.
Ruiter, M., Roelofs, A., Piai, V., Datadien, A., Steenbeek-Planting, E. G., van Engelen, R., & Hendriks, I. (2019). Stoppen met praten op de automatische piloot. Dixit, Tijdschrift over Taal- en Spraaktechnologie, Decembernummer, 34-35. https://hdl.handle.net/2066/218142
Satizabal, C. L., Adams, H. H., Hibar, D. P., White, C. C., Knol, M. J., Stein, J. L., … & Smith, A. V. (2019). Genetic architecture of subcortical brain structures in 38,851 individuals. Nature genetics, 51(11), 1624-1636. https://doi.org/10.1038/s41588-019-0511-y
Schiller, N. O., van Lenteren, L., Witteman, J., Ouwehand, K., Band, G. P., & Verhagen, A. (2017). Solving the problem of double negation is not impossible: electrophysiological evidence for the cohesive function of sentential negation. Language, Cognition and Neuroscience, 32(2), 147-157. https://doi.org/10.1080/23273798.2016.1236977
Schiller, N.O., & Witteman, J. (2016). Logically equivalent, functionally different: experimental evidence from the processing of non-negated and double-negated constructions. In Reuneker, A., R. Boogaart & S. Lensink (2016). Aries Netwerk: een constructicon (pp. 180-182). Leiden.
Schoffelen, J.-M., Oostenveld, R., Lam, N. H. L., Udden, J., Hulten, A., & Hagoort, P. (2019). A 204-subject multimodal neuroimaging dataset to study language processing. Scientific Data, 6(1): 17. https://doi.org/10.1038/s41597-019-0020-y
Schoot, L., Hagoort, P., & Segaert, K. (2019). Stronger syntactic alignment in the presence of an interlocutor. Frontiers in Psychology, 10, 685.  https://doi.org/10.3389/fpsyg.2019.00685
Schubotz, L., Drijvers, L., Holler, J., & Ozyurek, A. (2016). The cocktail party effect revisited in older and younger adults: When do iconic co-speech gestures help?. In the 8th Speech in Noise Workshop (SpiN 2016).
Schuerman, W.L., McQueen, J.M., & Meyer, A. (2019). Speaker statistical averageness modulates word recognition in adverse listening conditions. In Proceedings of the 19th International Congress of Phonetic Sciences, Melbourne.
Seeliger, K., Ambrogioni, L., Güçlütürk, Y., van den Bulk, L. M., Güçlü, U., & van Gerven, M. A. J. (2021). End-to-end neural system identification with neural information flow. PLOS Computational Biology, 17(2), e1008558. https://doi.org/10.1371/journal.pcbi.1008558
Shao, Z., Van Paridon, J., Poletiek, F., & Meyer, A. S. (2019). Effects of phrase and word frequencies in noun phrase production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(1), 147. https://doi.org/10.1037/xlm0000570
Sharoh, D. L. (2020). Advances in layer specific fMRI for the study of language, cognition and directed brain networks (Doctoral dissertation, [Sl: sn]). https://hdl.handle.net/2066/214840
Sharoh, D., Van Mourik, T., Bains, L. J., Segaert, K., Weber, K., Hagoort, P., & Norris, D. (2019). Laminar specific fMRI reveals directed interactions in distributed networks during language processing. In Proceedings of the National Academy of Sciences of the United States of America, 116(42), 21185-21190.  https://doi.org/10.1073/pnas.1907858116
Sierpowska, J., Gabarrós, A., Fernandez-Coello, A., Camins, A., Castaner, S., Juncadella, M., & Rodríguez-Fornells, A. (2019). Semantic processing and ventral pathways for language: intrasurgical and lesion-behavior mapping evidence. Neuroimage Clinical.  https://doi.org/10.1016/j.nicl.2019.101704
Sierpowska, J., León-Cabrera, P., Camins, À., Juncadella, M., Gabarrós, A., & Rodríguez-Fornells, A. (2020). The black box of global aphasia: Neuroanatomical underpinnings of remission from acute global aphasia with preserved inner language function. Cortex, 130, 340-350. https://doi.org/10.1016/j.cortex.2020.06.009
Simanova, I., Francken, J. C., de Lange, F. P., & Bekkering, H. (2016). Linguistic priors shape categorical perception. Language, Cognition and Neuroscience, 31(1), 159-165.
Simanova, I., Francken, J. C., de Lange, F. P., & Bekkering, H. (2016). Linguistic priors shape categorical perception. Language, Cognition and Neuroscience, 31(1), 159-165.
Snijders Blok, L., Kleefstra, T., Venselaar, H., Maas, S., Kroes, H. Y., Lachmeijer, A. M. A., Van Gassen, K. L. I., Firth, H. V., Tomkins, S., Bodek, S., The DDD Study, Õunap, K., Wojcik, M. H., Cunniff, C., Bergstrom, K., Powis, Z., Tang, S., Shinde, D. N., Au, C., Iglesias, A. D., Izumi, K. and 18 more (2019). De novo variants disturbing the transactivation capacity of POU3F3 cause a characteristic neurodevelopmental disorder. The American Journal of Human Genetics, 105(2), 403-412. https://doi.org/10.1016/j.ajhg.2019.06.007
Snijders Blok, L., Rousseau, J., Twist, J., Ehresmann, S., Takaku, M., Venselaar, H., … & Steeves, M. A. (2018). CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nature communications, 9(1), 1-12.  https://doi.org/10.1038/s41467-018-06014-6
Snijders Blok, L., Rousseau, J., Twist, J., Ehresmann, S., Takaku, M., Venselaar, H., … & Steeves, M. A. (2019). Author Correction: CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10161-9
Steinert-Threlkeld, S., & Szymanik, J. (2019). Learnability and semantic universals. Semantics and Pragmatics, 12, 4. http://dx.doi.org/10.3765/sp.12.4
Stolk, A., Bašnáková, J., & Toni, I. (2020). Joint epistemic engineering: The neglected process of context construction in human communication.
Stolk, A., D’Imperio, D., Di Pellegrino, G., & Toni, I. (2015). Altered communicative decisions following ventromedial prefrontal lesions. Current Biology, 25(11), 1469-1474.
Stolk, A., Noordzij, M. L., Verhagen, L., Volman, I., Schoffelen, J. M., Oostenveld, R., … & Toni, I. (2014). Cerebral coherence between communicators marks the emergence of meaning. Proceedings of the National Academy of Sciences, 111(51), 18183-18188.
Stolk, A., Verhagen, L., & Toni, I. (2016). Conceptual alignment: How brains achieve mutual understanding. Trends in cognitive sciences, 20(3), 180-191.
Szollosi, A., Kellen, D., Navarro, N., Shiffrin, R., van Rooij, I., Van Zandt, T., Donkin, C. (2020). Is preregistration worthwhile? Trends in Cognitive Sciences, 24(2), 94-95.
Szymanik, J. (2016). Computing simple quantifiers. In Quantifiers and Cognition: Logical and Computational Perspectives (pp. 41-49). Springer, Cham.
Szymanik, J. (2016). Quantifiers and cognition: Logical and computational perspectives (Vol. 96). Cham: Springer.
Szymanik, J., & Thorne, C. (2017). Exploring the relation between semantic complexity and quantifier distribution in large corpora. Language Sciences, 60, 80-93. https://doi.org/10.1016/j.langsci.2017.01.006
Takashima, A., Bakker, I., Van Hell, J. G., Janzen, G., & McQueen, J. M. (2017). Interaction between episodic and semantic memory networks in the acquisition and consolidation of novel spoken words. Brain and language, 167, 44-60.
Takashima, A., Bakker-Marshall, I., Van Hell, J. G., McQueen, J. M., & Janzen, G. (2019). Neural correlates of word learning in children. Developmental cognitive neuroscience, 37, 100649. https://doi.org/10.1016/j.dcn.2019.100649
Takashima, A., Konopka, A., Meyer, A., Hagoort, P., & Weber, K. (2020). Speaking in the brain: The interaction between words and syntax in sentence production. Journal of cognitive neuroscience, 32(8), 1466-1483. https://doi.org/10.1162/jocn_a_01563
Tan, Y., & Hagoort, P. (2020). Catecholaminergic modulation of semantic processing in sentence comprehension. Cerebral Cortex, 30(12), 6426-6443. https://doi.org/10.1093/cercor/bhaa204
ten Bosch, L. F. M., Boves, L. W. J., & Ernestus, M. T. C. (2017). The recognition of compounds. A computational account. https://hdl.handle.net/2066/181571
ten Cate, C. (2014). On the phonetic and syntactic processing abilities of birds: From songs to speech and artificial grammars. Current Opinion in Neurobiology, 28, 157-164.
Terporten, R. (2020). The power of context: How linguistic contextual information shapes brain dynamics during sentence processing (Doctoral dissertation, Radboud University Nijmegen Nijmegen). https://hdl.handle.net/2066/222089
Terporten, R., Schoffelen, J. M., Dai, B., Hagoort, P., & Kösem, A. (2019). The Relation between Alpha/Beta oscillations and the encoding of Sentence induced contextual information. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-56600-x
Theves, S. (2017). Accumulation and updating of hierarchical knowledge in hippocampus and PFC. In Internal Symposium.http://hdl.handle.net/21.11116/0000-0006-F9AF-D
Theves, S. (2020). Mapping conceptual knowledge in the hippocampal system. (Doctoral dissertation, [Sl: sn]). https://hdl.handle.net/2066/219703
Theves, S., Fernandez, G., & Doeller, C. F. (2019). The hippocampus encodes distances in multidimensional feature space. Current Biology, 29(7), 1226-1231.  https://doi.org/10.1016/j.cub.2019.02.035
Theves, S., Fernández, G., & Doeller, C. F. (2020). The hippocampus maps concept space, not feature space. Journal of Neuroscience, 40(38), 7318-7325. https://doi.org/10.1523/JNEUROSCI.0494-20.2020
Thorin, J. (2020). Can you hear what you cannot say? The interactions of speech perception and production during non-native phoneme learning (Doctoral dissertation, [Sl: sn]). https://hdl.handle.net/2066/216199
Thorin, J., Sadakata, M., Desain, P., & McQueen, J. M. (2018). Perception and production in interaction during non-native speech category learning. The Journal of the Acoustical Society of America, 144(1), 92-103. https://doi.org/10.1121/1.5044415
Tilot, A. K., Vino, A., Kucera, K. S., Carmichael, D. A., Van den Heuvel, L., Den Hoed, J., Sidoroff-Dorso, A. V., Campbell, A., Porteous, D. J., St Pourcain, B., Van Leeuwen, T. M., Ward, J., Rouw, R., Simner, J., & Fisher, S. E. (2019). Investigating genetic links between grapheme-colour synaesthesia and neuropsychiatric traits. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences. Advance online publication.  https://doi.org/10.1098/rstb.2019.0026
Todorova, L. (2021). Language bias in visually driven decisions: Computational and neurophysiological mechanisms (Doctoral dissertation, [Sl: sn]). https://hdl.handle.net/2066/229753
Todorova, L., & Neville, D. A. (2019). Perception or control? Mechanisms of gender bias introduced by labels and associative words.
Todorova, L., & Neville, D. A. (2020). Associative and identity words promote the speed of visual categorization: a hierarchical drift diffusion account. Frontiers in psychology, 11, 955. https://doi.org/10.3389/fpsyg.2020.00955
Todorova, L., Neville, D. A., & Piai, V. (2020). Lexical-semantic and executive deficits revealed by computational modelling: a drift diffusion model perspective. Neuropsychologia, 146, 107560. https://doi.org/10.1016/j.neuropsychologia.2020.107560
Todorova, L., Neville, D., & Piai, V. (2019). Lexical-semantic and executive deficits revealed by computational modelling: a drift diffusion model perspective.
Trujillo, J. P. (2016). The Kinematic Correlates of Signaling Communicative Intent in Action and Pantomime. In the 10th Annual Rovereto Workshop on Concepts, Actions and Objects (CAOS)-Functional and Neuronal Perspectives.
Trujillo, J. P. (2017). Kinect and gesture research: a validation study of automatic feature coding. In the International Conference on Multimodal Communication (ICMC) 2017: Developing New Theories and Methods.http://hdl.handle.net/21.11116/0000-0002-85C9-5
Trujillo, J. P. (2017). Space, Time and Gaze: How kinematic modulation and eye-gaze optimize communicative interaction. In the Language as a form of Action Conference.http://hdl.handle.net/21.11116/0000-0002-85CD-1
Trujillo, J. P. (2020). Movement speaks for itself: The kinematic and neural dynamics of communicative action and gesture (Doctoral dissertation, Radboud University Nijmegen Nijmegen). https://hdl.handle.net/2066/215079
Trujillo, J. P., Simanova, I., Bekkering, H., & Özyürek, A. (2018). Communicative intent modulates production and comprehension of actions and gestures: A Kinect study. Cognition, 180, 38-51. https://doi.org/10.1016/j.cognition.2018.04.003
Trujillo, J. P., Simanova, I., Bekkering, H., & Özyürek, A. (2019). The communicative advantage: how kinematic signaling supports semantic comprehension. Psychological research, 1-15. https://doi.org/10.1007/s00426-019-01198-y
Trujillo, J. P., Simanova, I., Özyürek, A., & Bekkering, H. (2020). Seeing the unexpected: How brains read communicative intent through kinematics. Cerebral Cortex, 30(3), 1056-1067.  https://doi.org/10.1093/cercor/bhz148
Trujillo, J. P., Simanova, I., Özyürek, A., & Bekkering, H. (2020). Seeing the unexpected: How brains read communicative intent through kinematics. Cerebral Cortex, 30(3), 1056-1067. https://doi.org/10.1093/cercor/bhz148
Trujillo, J. P., Vaitonyte, J., Simanova, I., & Özyürek, A. (2019). Toward the markerless and automatic analysis of kinematic features: A toolkit for gesture and movement research. Behavior research methods, 51(2), 769-777.
Trujillo, J. P., Vaitonyte, J., Simanova, I., & Ozyurek, A. (2019). Toward the markerless and automatic analysis of kinematic features: A toolkit for gesture and movement research. Behavior Research Methods, 51(2), 769-777. https://doi.org/10.3758/s13428-018-1086-8
Trujillo, J. P., Vaitonyte, J., Simanova, I., & Özyürek, A. (2019). Toward the markerless and automatic analysis of kinematic features: A toolkit for gesture and movement research. Behavior research methods, 51(2), 769-777. https://doi.org/10.3758/s13428-018-1086-8
Trujillo, J. P., Vaitonyte, J., Simanova, I., & Özyürek, A. (2019). Toward the markerless and automatic analysis of kinematic features: A toolkit for gesture and movement research. Behavior research methods, 51(2), 769-777. https://doi.org/10.3758/s13428-018-1086-8
Trujillo, J., Özyürek, A., Holler, J., & Drijvers, L. (2020). Evidence for a Multimodal Lombard Effect: Speakers modulate not only speech but also gesture to overcome noise.
Truong, D. T., Adams, A. K., Paniagua, S., Frijters, J. C., Boada, R., Hill, D. E., Lovett, M. W., Mahone, E. M., Willcutt, E. G., Wolf, M., Defries, J. C., Gialluisi, A., Francks, C., Fisher, S. E., Olson, R. K., Pennington, B. F., Smith, S. D., Bosson-Heenan, J., & Gruen, J. R. (2019). Multivariate genome-wide association study of rapid automatised naming and rapid alternating stimulus in Hispanic American and African–American youth. Journal of Medical Genetics, 56(8), 557-566. http://dx.doi.org/10.1136/jmedgenet-2018-105874
Tsoi, E. Y. L., Yang, W., Chan, A. W. S., & Kidd, E. (2019). Mandarin-English speaking bilingual and Mandarin speaking monolingual children’s comprehension of relative clauses. Applied Psycholinguistics, 40(4), 933-964. https://doi.org/10.1017/S0142716419000079
Tsoukala, C. (2021). Bilingual sentence production and code-switching: Neural network simulations (Doctoral dissertation, Nijmegen:[Sl: sn]). https://hdl.handle.net/2066/232236
Tsoukala, C., Broersma, M., van den Bosch, A., & Frank, S. L. (2021). Simulating Code-switching Using a Neural Network Model of Bilingual Sentence Production. Computational Brain & Behavior, 4(1), 87-100. https://doi.org/10.1007/s42113-020-00088-6
Tsoukala, C., Frank, S. L., & Broersma, M. (2017). “He’s pregnant”: Simulating the confusing case of gender pronoun errors in L2 English. In the 39th annual meeting of the cognitive science society (cogsci 2017) (pp. 3392-3397). Cognitive Science Society. https://hdl.handle.net/2066/178590
Tsoukala, C., Frank, S. L., Van Den Bosch, A., Kroff, J. V., & Broersma, M. (2020). Modeling the auxiliary phrase asymmetry in code-switched Spanish–English. Bilingualism: Language and Cognition, 1-10. https://doi.org/10.1017/S1366728920000449
Tsoukala, C., Frank, S.L., Van den Bosch, A., Valdés Kroff, J., & Broersma, M. (2019). Simulating Spanish-English code-switching: El modelo está generating code switches. In Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics (pp. 20-29). Minneapolis, Minnesota: Association for Computational Linguistics. https://hdl.handle.net/2066/213711
Tucker, B. V., & Ernestus, M. (2016). Why we need to investigate casual speech to truly understand language production, processing and the mental lexicon. The mental lexicon, 11(3), 375-400.
Uddén, J., de Jesus Dias Martins, M., Zuidema, W., & Tecumseh Fitch, W. (2019). Hierarchical Structure in Sequence Processing: How to Measure It and Determine Its Neural Implementation. Topics in cognitive science. https://doi.org/10.1111/tops.12442
Udden, J., Hulten, A., Bendt, K., Mineroff, Z., Kucera, K. S., Vino, A., Fedorenko, E., Hagoort, P., & Fisher, S. E. (2019). Towards robust functional neuroimaging genetics of cognition. Journal of Neuroscience, 39(44), 8778-8787.  https://doi.org/10.1523/JNEUROSCI.0888-19.2019
Uhlmann, M. (2020). Neurobiological models of sentence processing (Doctoral dissertation, Radboud University Nijmegen Nijmegen). https://hdl.handle.net/2066/226625
Ullas, S. (2020). Lexical and audiovisual bases of perceptual adaptation in speech. Ipskamp Printing BV. https://doi.org/10.26481/dis.20200617su
Ullas, S., Eisner, F., Cutler, A., & Formisano, E. (2016). Lexical and lip-reading information as sources of phonemic boundary recalibration. In the Eighth Annual Meeting of the Society for the Neurobiology of Language (SNL 2016).
Ullas, S., Formisano, E., Eisner, F., & Cutler, A. (2020). Audiovisual and lexical cues do not additively enhance perceptual adaptation. Psychonomic bulletin & review, 27, 707-715. https://doi.org/10.3758/s13423-020-01728-5
Ullas, S., Formisano, E., Eisner, F., & Cutler, A. (2020). Interleaved lexical and audiovisual information can retune phoneme boundaries. Attention, Perception, & Psychophysics, 1-9. https://doi.org/10.3758/s13414-019-01961-8
Ullas, S., Hausfeld, L., Cutler, A., Eisner, F., & Formisano, E. (2020). Neural correlates of phonetic adaptation as induced by lexical and audiovisual context. Journal of Cognitive Neuroscience, 32(11), 2145-2158. https://doi.org/10.1162/jocn_a_01608
Ulmer, D., Hupkes, D., & Bruni, E. (2019). Assessing incrementality in sequence-to-sequence models. Repl4NLP, ACL 2019. arXiv preprint arXiv:1906.03293
van de Pol, I., Steinert-Threlkeld, S., & Szymanik, J. (2019). Complexity and learnability in the explanation of semantic universals of quantifiers. In Proceedings of the 41st Annual Meeting of the Cognitive Science Society.
Van De Pol, I., Van Rooij, I., & Szymanik, J. (2018). Parameterized complexity of theory of mind reasoning in dynamic epistemic logic. Journal of Logic, Language and Information, 27(3), 255-294. https://doi.org/10.1007/s10849-018-9268-4
Van De Pol, I., Van Rooij, I., & Szymanik, J. (2018). Parameterized complexity of theory of mind reasoning in dynamic epistemic logic. Journal of Logic, Language and Information, 27(3), 255-294. https://doi.org/10.1007/s10849-018-9268-4
Van den Bosch, A. (2016). Open-domain extraction of future events from Twitter. https://doi.org/10.1017/ S1351324916000036
Van der Meer, D., Sønderby, I. E., Kaufmann, T., Walters, G. B., Abdellaoui, A., Ames, D., Amunts, K., Andersson, M., Armstrong, N. J., Bernard, M., Blackburn, N. B., Blangero, J., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Bülow, R., Cahn, W., Calhoun, V. D., Caspers, S., Cavalleri, G. L. and 112 more (2019). Association of copy number variation of the 15q11.2 BP1-BP2 region with cortical and subcortical morphology and cognition. JAMA Psychiatry. Advance online publication. https://doi.org/10.1001/jamapsychiatry.2019.3779
van der Wal, O., de Boer, S., Bruni, E., & Hupkes, D. (2020). The Grammar of Emergent Languages. arXiv preprint arXiv:2010.02069.
Van Gijn, R., Hammarström, H., Van de Kerke, S., Krasnoukhova, O., & Muysken, P. (2017). Linguistic areas, linguistic convergence and river systems in South America. In The Cambridge handbook of areal linguistics (pp. 964-996). Cambridge University Press. https://doi.org/10.1017/9781107279872.034
van Goch, M.M., Verhoeven, L.T.M., & McQueen, J.M. (2019). Success in learning similar-sounding words predicts vocabulary depth above and beyond vocabulary breadth. Journal of Child Language, 46, 184–197. https://doi.org/10.1017/S0305000918000338
van Lieshout, L. L., de Lange, F. P., & Cools, R. (2019). Motives underlying human curiosity. Nature Human Behaviour, 3(6), 550-551.  https://doi.org/10.1038/s41562-019-0565-y
van Nuland, A. J., den Ouden, H. E., Zach, H., Dirkx, M. F., van Asten, J. J., Scheenen, T. W., … & Helmich, R. C. (2020). GABAergic changes in the thalamocortical circuit in Parkinson’s disease. Human brain mapping, 41(4), 1017-1029. https://doi.org/10.1002/hbm.24857
Van Os, M., De Jong, N. H., & Bosker, H. R. (2020). Fluency in dialogue: Turn‐taking behavior shapes perceived fluency in native and nonnative speech. Language Learning, 70(4), 1183-1217. https://doi.org/10.1111/lang.12416
Van Paridon, J., Roelofs, A., & Meyer, A. S. (2019). A lexical bottleneck in shadowing and translating of narratives. Language, Cognition and Neuroscience, 34(6), 803-812.  https://doi.org/10.1080/23273798.2019.1591470
van Rooij, I., & Baggio, G. (2020). Theory before the test: How to build high-verisimilitude explanatory theories in psychological science. Perspectives on Psychological Science, 1745691620970604. https://doi.org/10.1177/1745691620970604
van Rooij, I., & Baggio, G. (2020). Theory development requires an epistemological sea change. Psychological Inquiry, 31(4), 321-325.
van Rooij, I., & Blokpoel, M. (2020). Formalizing verbal theories: A tutorial by dialogue. Social Psychology, 51, 285-298 https://doi.org/10.1027/1864-9335/a000428
van Rooij, I., Blokpoel, M., de Haan, R., & Wareham, T. (2019). Tractable embodied computation needs embeddedness. Reti, saperi, linguaggi, 6(1), 25-38. https://doi.org/10.12832/94728
van Rooij, I., Blokpoel, M., Kwisthout, J., & Wareham, T. (2019). Cognition and intractability: A guide to classical and parameterized complexity analysis. Cambridge University Press. DOI: 10.12832/94728
Van Rooij, R. (2017). A fine-grained global analysis of implicatures. In Linguistic and psycholinguistic approaches on implicatures and presuppositions (pp. 73-110). Palgrave Macmillan, Cham.
van Rooij, R. (2017). Nonmonotonicity and knowability: As knowable as possible. In Rohit Parikh on Logic, Language and Society (pp. 53-65). Springer, Cham. https://doi.org/10.1007/978-3-319-47843-2_3
van Rooij, R., & Brochhagen, T. (2021). Extremes are Typical. A Game Theoretical Derivation. In Concepts, Frames and Cascades in Semantics, Cognition and Ontology (pp. 351-363). Springer, Cham.
van Rooij, R., & Kochari, A. (2019). Grounding a pragmatic theory of vagueness on experimental data: Semi-orders and Weber’s Law. In R. Dietz (Ed.), Vagueness & Rationality in Language Use and Cognition. Springer International Publishing. Doi: 10.1007/978-3-030-15931-3 https://doi.org/10.1007/978-3-030-15931-3_9
Veldhoen, S., Hupkes, D., & Zuidema, W. H. (2016). Diagnostic classifiers revealing how neural networks process hierarchical structure. In CoCo@ NIPS.
Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S., & St Pourcain, B. (2020). The developmental origins of genetic factors influencing language and literacy: Associations with early‐childhood vocabulary. Journal of Child Psychology and Psychiatry. https://doi.org/10.1111/jcpp.13327
Wadge, H., Brewer, R., Bird, G., Toni, I., & Stolk, A. (2019). Communicative misalignment in autism spectrum disorder. Cortex, 115, 15-26.  https://doi.org/10.1016/j.cortex.2019.01.003
Wagner, M., Broersma, M., McQueen, J.M., & Lemhöfer, K. (2019). Imitating speech in an unfamiliar language and an unfamiliar non-native accent in the native language. In Proceedings of the 19th International Congress of Phonetic Sciences, Melbourne.http://hdl.handle.net/21.11116/0000-0004-AB7D-0
Weber, K., Christiansen, M., Indefrey, P., & Hagoort, P. (2019). Primed from the start: Syntactic priming during the first days of language learning. Language Learning, 69(1), 198-221.  https://doi.org/10.1111/lang.12327
Westbrook, A., Cools, R., & Braver, T.S. (2019). Editorial. Special issue on Cognitive Effort. Neuropsychologia.
Westbrook, A., van den Bosch, R., Määttä, J. I., Hofmans, L., Papadopetraki, D., Cools, R., & Frank, M. J. (2020). Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science, 367(6484), 1362-1366. https://doi.org/10.1126/science.aaz5891
Wheatley, T., Boncz, A., Toni, I., & Stolk, A. (2019). Beyond the Isolated Brain: The Promise and Challenge of Interacting Minds. Neuron, 103(2), 186-188.  https://doi.org/10.1016/j.neuron.2019.05.009
Willems, R. M., Frank, S. L., Nijhof, A. D., Hagoort, P., & Van den Bosch, A. (2016). Prediction during natural language comprehension. Cerebral Cortex, 26(6), 2506-2516.
Willems, R. M., Nastase, S. A., & Milivojevic, B. (2020). Narratives for neuroscience. Trends in neurosciences, 43(5), 271-273. https://doi.org/10.1016/j.tins.2020.03.003
Winner, T., Selen, L., Murillo Oosterwijk, A., Verhagen, L., Medendorp, P., van Rooij, I., & Toni, I. (2019). Recipient design in communicative pointing. Cognitive Science, 43(5), 1-19.  https://doi.org/10.1111/cogs.12733
Wolf, M. C., Smith, A. C., Meyer, A. S., & Rowland, C. F. (2019, July). Modality effects in vocabulary acquisition. In The 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 1212-1218). Cognitive Science Society.http://hdl.handle.net/21.11116/0000-0004-4677-8
Wolfers, T., Floris, D. L., Dinga, R., van Rooij, D., Isakoglou, C., Kia, S. M., … & Peng, H. (2019). From pattern classification to stratification: towards conceptualizing the heterogeneity of Autism Spectrum Disorder. Neuroscience & Biobehavioral Reviews.  https://doi.org/10.1016/j.neubiorev.2019.07.010
Wu, Q., Kidd, E., & Goodhew, S. C. (2019). The spatial mapping of concepts in English and Mandarin. Journal of Cognitive Psychology, 31(7), 703-724.  https://doi.org/10.1080/20445911.2019.1663354
Yang, J., Frank, S. L., & van den Bosch, A. (2020, December). Less is Better: A cognitively inspired unsupervised model for language segmentation. In Proceedings of the Workshop on the Cognitive Aspects of the Lexicon (pp. 33-45).
Zabihi, M., Floris, D. L., Kia, S. M., Wolfers, T., Tillmann, J., Arenas, A. L., … & Marquand, A. (2020). Fractionating autism based on neuroanatomical normative modeling. Translational psychiatry, 10(1), 1-10. https://doi.org/10.1038/s41398-020-01057-0
Zabihi, M., Oldehinkel, M., Wolfers, T., Frouin, V., Goyard, D., Loth, E., … & Holt, R. (2019). Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(6), 567-578.  https://doi.org/10.1016/j.bpsc.2018.11.013
Zarate, Y. A., Bosanko, K. A., Caffrey, A. R., Bernstein, J. A., Martin, D. M., Williams, M. S., … & Vargas, M. (2019). Mutation update for the SATB2 gene. Human mutation, 40(8), 1013-1029.  https://doi.org/10.1002/humu.23771
Zhao, B., van de Pol, I., Raijmakers, M. E., & Szymanik, J. (2018). Predicting Cognitive Difficulty of the Deductive Mastermind Game with Dynamic Epistemic Logic Models. In Cogsci. https://doi.org/10.1121/1.5044415
Zheng, X., Roelofs, A., & Lemhöfer, K. (2016). Speaking Two Languages with One Mind: Language Selection Errors during Switching. In the Donders Discussions 2016.
Zheng, X., Roelofs, A., Erkan, H., & Lemhöfer, K. (2020). Dynamics of inhibitory control during bilingual speech production: An electrophysiological study. Neuropsychologia, 140, 107387. https://doi.org/10.1016/j.neuropsychologia.2020.107387
Zhu, Z., Bastiaansen, M. C. M., Hakun, J. G., Petersson, K. M., Wang, S., & Hagoort, P. (2019). Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study. Journal of Neurolinguistics, 52, 100855.  https://doi.org/10.1016/j.jneuroling.2019.100855
Zormpa, E., Brehm, L. E., Hoedemaker, R. S., & Meyer, A. S. (2019). The production effect and the generation effect improve memory in picture naming. Memory, 27(3), 340-352. https://doi.org/10.1080/09658211.2018.1510966
Zormpa, E., Meyer, A. S., & Brehm, L. E. (2019). Slow naming of pictures facilitates memory for their names. Psychonomic bulletin & review, 26(5), 1675-1682.  https://doi.org/10.3758/s13423-019-01620-x
Zuidema, W., & De Boer, B. (2018). The evolution of combinatorial structure in language. Current opinion in behavioral sciences, 21, 138-144. https://doi.org/10.1016/j.cobeha.2018.04.011
Zuidema, W., & Fitz, H. (2019). Key Issues and Future Directions: Models of Human Language and Speech Processing. In: P. Hagoort (Ed.), Human Language: from Genes and Brains to Behavior (pp. 353). Cambridge, MA: The MIT Press.
Zuidema, W., & Le, P. (2019). 23 VectorBased and Neural Models. In: P. Hagoort (Ed.), Human Language: from Genes and Brains to Behavior (pp. 313). Cambridge, MA: The MIT Press.
Zuidema, W., French, R. M., Alhama, R. G., Ellis, K., O’Donnell, T. J., Sainburg, T., & Gentner, T. Q. (2019). Five ways in which computational modeling can help advance cognitive science: Lessons from artificial grammar learning. Topics in cognitive science.  https://doi.org/10.1111/tops.12474
Zuidema, W., Hupkes, D., Wiggins, G., Scharff, C., & Rohrmeier, M. (2018). Formal models of structure building in music, language and animal song. The origins of musicality, 253.